Computer Science > Sound
[Submitted on 1 Mar 2023 (v1), last revised 15 Mar 2023 (this version, v2)]
Title:Distance-based Weight Transfer from Near-field to Far-field Speaker Verification
View PDFAbstract:The scarcity of labeled far-field speech is a constraint for training superior far-field speaker verification systems. Fine-tuning the model pre-trained on large-scale near-field speech substantially outperforms training from scratch. However, the fine-tuning method suffers from two limitations--catastrophic forgetting and overfitting. In this paper, we propose a weight transfer regularization(WTR) loss to constrain the distance of the weights between the pre-trained model with large-scale near-field speech and the fine-tuned model through a small number of far-field speech. With the WTR loss, the fine-tuning process takes advantage of the previously acquired discriminative ability from the large-scale near-field speech without catastrophic forgetting. Meanwhile, we use the PAC-Bayes generalization theory to analyze the generalization bound of the fine-tuned model with the WTR loss. The analysis result indicates that the WTR term makes the fine-tuned model have a tighter generalization upper bound. Moreover, we explore three kinds of norm distance for weight transfer, which are L1-norm distance, L2-norm distance and Max-norm distance. Finally, we evaluate the effectiveness of the WTR loss on VoxCeleb (pre-trained dataset) and FFSVC (fine-tuned dataset) datasets.
Submission history
From: Li Zhang [view email][v1] Wed, 1 Mar 2023 06:38:02 UTC (2,802 KB)
[v2] Wed, 15 Mar 2023 03:05:35 UTC (2,802 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.