Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Dec 2022 (v1), last revised 15 Apr 2023 (this version, v3)]
Title:Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management
View PDFAbstract:Prior to the deployment of robotic systems, pre-training the deep-recognition models on all potential visual cases is infeasible in practice. Hence, test-time adaptation (TTA) allows the model to adapt itself to novel environments and improve its performance during test time (i.e., lifelong adaptation). Several works for TTA have shown promising adaptation performances in continuously changing environments. However, our investigation reveals that existing methods are vulnerable to dynamic distributional changes and often lead to overfitting of TTA models. To address this problem, this paper first presents a robust TTA framework with compound domain knowledge management. Our framework helps the TTA model to harvest the knowledge of multiple representative domains (i.e., compound domain) and conduct the TTA based on the compound domain knowledge. In addition, to prevent overfitting of the TTA model, we devise novel regularization which modulates the adaptation rates using domain-similarity between the source and the current target domain. With the synergy of the proposed framework and regularization, we achieve consistent performance improvements in diverse TTA scenarios, especially on dynamic domain shifts. We demonstrate the generality of proposals via extensive experiments including image classification on ImageNet-C and semantic segmentation on GTA5, C-driving, and corrupted Cityscapes datasets.
Submission history
From: Junha Song [view email][v1] Fri, 16 Dec 2022 09:02:01 UTC (4,439 KB)
[v2] Thu, 23 Mar 2023 15:07:46 UTC (2,728 KB)
[v3] Sat, 15 Apr 2023 04:03:04 UTC (3,136 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.