Computer Science > Machine Learning
[Submitted on 8 Dec 2022]
Title:Predicting dominant hand from spatiotemporal context varying physiological data
View PDFAbstract:Health metrics from wrist-worn devices demand an automatic dominant hand prediction to keep an accurate operation. The prediction would improve reliability, enhance the consumer experience, and encourage further development of healthcare applications. This paper aims to evaluate the use of physiological and spatiotemporal context information from a two-hand experiment to predict the wrist placement of a commercial smartwatch. The main contribution is a methodology to obtain an effective model and features from low sample rate physiological sensors and a self-reported context survey. Results show an effective dominant hand prediction using data from a single subject under real-life conditions.
Submission history
From: Jorge Enrique Neira Garcia [view email][v1] Thu, 8 Dec 2022 05:14:48 UTC (2,123 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.