Statistics > Machine Learning
[Submitted on 25 Nov 2022 (v1), last revised 20 Sep 2023 (this version, v2)]
Title:Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
View PDFAbstract:Self-learning Monte Carlo (SLMC) methods are recently proposed to accelerate Markov chain Monte Carlo (MCMC) methods using a machine learning model. With latent generative models, SLMC methods realize efficient Monte Carlo updates with less autocorrelation. However, SLMC methods are difficult to directly apply to multimodal distributions for which training data are difficult to obtain. To solve the limitation, we propose parallel adaptive annealing, which makes SLMC methods directly apply to multimodal distributions with a gradually trained proposal while annealing target distribution. Parallel adaptive annealing is based on (i) sequential learning with annealing to inherit and update the model parameters, (ii) adaptive annealing to automatically detect under-learning, and (iii) parallel annealing to mitigate mode collapse of proposal models. We also propose VAE-SLMC method which utilizes a variational autoencoder (VAE) as a proposal of SLMC to make efficient parallel proposals independent of any previous state using recently clarified quantitative properties of VAE. Experiments validate that our method can proficiently obtain accurate samples from multiple multimodal toy distributions and practical multimodal posterior distributions, which is difficult to achieve with the existing SLMC methods.
Submission history
From: Yuma Ichikawa [view email][v1] Fri, 25 Nov 2022 10:53:53 UTC (3,607 KB)
[v2] Wed, 20 Sep 2023 01:17:05 UTC (3,364 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.