Computer Science > Neural and Evolutionary Computing
[Submitted on 23 Nov 2022 (v1), last revised 28 Oct 2024 (this version, v3)]
Title:Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks
View PDF HTML (experimental)Abstract:Developmental plasticity plays a prominent role in shaping the brain's structure during ongoing learning in response to dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mechanisms, thus limiting their ability to learn efficiently, rapidly, and accurately. This paper proposed a developmental plasticity-inspired adaptive pruning (DPAP) method, with inspiration from the adaptive developmental pruning of dendritic spines, synapses, and neurons according to the ``use it or lose it, gradually decay" principle. The proposed DPAP model considers multiple biologically realistic mechanisms (such as dendritic spine dynamic plasticity, activity-dependent neural spiking trace, and local synaptic plasticity), with additional adaptive pruning strategy, so that the network structure can be dynamically optimized during learning without any pre-training and retraining. Extensive comparative experiments show consistent and remarkable performance and speed boost with the extremely compressed networks on a diverse set of benchmark tasks for deep ANNs and SNNs, especially the spatio-temporal joint pruning of SNNs in neuromorphic datasets. This work explores how developmental plasticity enables complex deep networks to gradually evolve into brain-like efficient and compact structures, eventually achieving state-of-the-art (SOTA) performance for biologically realistic SNNs.
Submission history
From: Bing Han [view email][v1] Wed, 23 Nov 2022 05:26:51 UTC (10,116 KB)
[v2] Mon, 6 Feb 2023 01:57:39 UTC (6,959 KB)
[v3] Mon, 28 Oct 2024 09:15:12 UTC (29,319 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.