Computer Science > Information Retrieval
[Submitted on 26 Sep 2022]
Title:Legal Case Document Similarity: You Need Both Network and Text
View PDFAbstract:Estimating the similarity between two legal case documents is an important and challenging problem, having various downstream applications such as prior-case retrieval and citation recommendation. There are two broad approaches for the task -- citation network-based and text-based. Prior citation network-based approaches consider citations only to prior-cases (also called precedents) (PCNet). This approach misses important signals inherent in Statutes (written laws of a jurisdiction). In this work, we propose Hier-SPCNet that augments PCNet with a heterogeneous network of Statutes. We incorporate domain knowledge for legal document similarity into Hier-SPCNet, thereby obtaining state-of-the-art results for network-based legal document similarity. Both textual and network similarity provide important signals for legal case similarity; but till now, only trivial attempts have been made to unify the two signals. In this work, we apply several methods for combining textual and network information for estimating legal case similarity. We perform extensive experiments over legal case documents from the Indian judiciary, where the gold standard similarity between document-pairs is judged by law experts from two reputed Law institutes in India. Our experiments establish that our proposed network-based methods significantly improve the correlation with domain experts' opinion when compared to the existing methods for network-based legal document similarity. Our best-performing combination method (that combines network-based and text-based similarity) improves the correlation with domain experts' opinion by 11.8% over the best text-based method and 20.6\% over the best network-based method. We also establish that our best-performing method can be used to recommend / retrieve citable and similar cases for a source (query) case, which are well appreciated by legal experts.
Submission history
From: Paheli Bhattacharya [view email][v1] Mon, 26 Sep 2022 07:33:23 UTC (328 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.