Computer Science > Data Structures and Algorithms
[Submitted on 2 Sep 2022 (v1), last revised 12 Oct 2022 (this version, v2)]
Title:Optimal General Factor Problem and Jump System Intersection
View PDFAbstract:In the optimal general factor problem, given a graph $G=(V, E)$ and a set $B(v) \subseteq \mathbb Z$ of integers for each $v \in V$, we seek for an edge subset $F$ of maximum cardinality subject to $d_F(v) \in B(v)$ for $v \in V$, where $d_F(v)$ denotes the number of edges in $F$ incident to $v$. A recent crucial work by Dudycz and Paluch shows that this problem can be solved in polynomial time if each $B(v)$ has no gap of length more than one. While their algorithm is very simple, its correctness proof is quite complicated. In this paper, we formulate the optimal general factor problem as the jump system intersection, and reveal when the algorithm by Dudycz and Paluch can be applied to this abstract form of the problem. By using this abstraction, we give another correctness proof of the algorithm, which is simpler than the original one. We also extend our result to the valuated case.
Submission history
From: Yusuke Kobayashi [view email][v1] Fri, 2 Sep 2022 01:50:19 UTC (87 KB)
[v2] Wed, 12 Oct 2022 04:13:17 UTC (87 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.