Computer Science > Computation and Language
[Submitted on 22 Aug 2022]
Title:Type-enriched Hierarchical Contrastive Strategy for Fine-Grained Entity Typing
View PDFAbstract:Fine-grained entity typing (FET) aims to deduce specific semantic types of the entity mentions in text. Modern methods for FET mainly focus on learning what a certain type looks like. And few works directly model the type differences, that is, let models know the extent that one type is different from others. To alleviate this problem, we propose a type-enriched hierarchical contrastive strategy for FET. Our method can directly model the differences between hierarchical types and improve the ability to distinguish multi-grained similar types. On the one hand, we embed type into entity contexts to make type information directly perceptible. On the other hand, we design a constrained contrastive strategy on the hierarchical structure to directly model the type differences, which can simultaneously perceive the distinguishability between types at different granularity. Experimental results on three benchmarks, BBN, OntoNotes, and FIGER show that our method achieves significant performance on FET by effectively modeling type differences.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.