Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2022]
Title:Understanding Adversarial Robustness of Vision Transformers via Cauchy Problem
View PDFAbstract:Recent research on the robustness of deep learning has shown that Vision Transformers (ViTs) surpass the Convolutional Neural Networks (CNNs) under some perturbations, e.g., natural corruption, adversarial attacks, etc. Some papers argue that the superior robustness of ViT comes from the segmentation of its input images; others say that the Multi-head Self-Attention (MSA) is the key to preserving the robustness. In this paper, we aim to introduce a principled and unified theoretical framework to investigate such an argument on ViT's robustness. We first theoretically prove that, unlike Transformers in Natural Language Processing, ViTs are Lipschitz continuous. Then we theoretically analyze the adversarial robustness of ViTs from the perspective of the Cauchy Problem, via which we can quantify how the robustness propagates through layers. We demonstrate that the first and last layers are the critical factors to affect the robustness of ViTs. Furthermore, based on our theory, we empirically show that unlike the claims from existing research, MSA only contributes to the adversarial robustness of ViTs under weak adversarial attacks, e.g., FGSM, and surprisingly, MSA actually comprises the model's adversarial robustness under stronger attacks, e.g., PGD attacks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.