Computer Science > Machine Learning
[Submitted on 29 Jul 2022]
Title:Improved Policy Optimization for Online Imitation Learning
View PDFAbstract:We consider online imitation learning (OIL), where the task is to find a policy that imitates the behavior of an expert via active interaction with the environment. We aim to bridge the gap between the theory and practice of policy optimization algorithms for OIL by analyzing one of the most popular OIL algorithms, DAGGER. Specifically, if the class of policies is sufficiently expressive to contain the expert policy, we prove that DAGGER achieves constant regret. Unlike previous bounds that require the losses to be strongly-convex, our result only requires the weaker assumption that the losses be strongly-convex with respect to the policy's sufficient statistics (not its parameterization). In order to ensure convergence for a wider class of policies and losses, we augment DAGGER with an additional regularization term. In particular, we propose a variant of Follow-the-Regularized-Leader (FTRL) and its adaptive variant for OIL and develop a memory-efficient implementation, which matches the memory requirements of FTL. Assuming that the loss functions are smooth and convex with respect to the parameters of the policy, we also prove that FTRL achieves constant regret for any sufficiently expressive policy class, while retaining $O(\sqrt{T})$ regret in the worst-case. We demonstrate the effectiveness of these algorithms with experiments on synthetic and high-dimensional control tasks.
Submission history
From: Jonathan Lavington [view email][v1] Fri, 29 Jul 2022 22:02:14 UTC (1,404 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.