Electrical Engineering and Systems Science > Systems and Control
[Submitted on 7 Jul 2022]
Title:State Prediction of Human-in-the-Loop Multi-rotor System with Stochastic Human Behavior Model
View PDFAbstract:Reachability analysis is a widely used method to analyze the safety of a Human-in-the-Loop Cyber Physical System (HiLCPS). This strategy allows the HiLCPS to respond against an imminent threat in advance by predicting reachable states of the system. However, it could lead to an unnecessarily conservative reachable set if the prediction only relies on the system dynamics without explicitly considering human behavior, and thus the risk might be overestimated. To reduce the conservativeness of the reachability analysis, we present a state prediction method which takes into account a stochastic human behavior model represented as a Gaussian Mixture Model (GMM). In this paper, we focus on the multi-rotor in a near-collision situation. The stochastic human behavior model is trained using experimental data to represent human operators' evasive maneuver. Then, we can retrieve a human control input probability distribution from the trained stochastic human behavior model using the Gaussian Mixture Regression (GMR). The proposed algorithm predicts the probability distribution of the multi-rotor's future state based on the given dynamics and the retrieved human control input probability distribution. Besides, the proposed state prediction method considers the uncertainty of the initial state modeled as a GMM, which yields more robust performance. Human subject experiment results are provided to demonstrate the effectiveness of the proposed algorithm.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.