Computer Science > Machine Learning
[Submitted on 5 Jul 2022 (v1), last revised 20 Jan 2023 (this version, v3)]
Title:Multimodal Frame-Scoring Transformer for Video Summarization
View PDFAbstract:As the number of video content has mushroomed in recent years, automatic video summarization has come useful when we want to just peek at the content of the video. However, there are two underlying limitations in generic video summarization task. First, most previous approaches read in just visual features as input, leaving other modality features behind. Second, existing datasets for generic video summarization are relatively insufficient to train a caption generator used for extracting text information from a video and to train the multimodal feature extractors. To address these two problems, this paper proposes the Multimodal Frame-Scoring Transformer (MFST), a framework exploiting visual, text, and audio features and scoring a video with respect to frames. Our MFST framework first extracts each modality features (audio-visual-text) using pretrained encoders. Then, MFST trains the multimodal frame-scoring transformer that uses multimodal representation based on extracted features as inputs and predicts frame-level scores. Our extensive experiments with previous models and ablation studies on TVSum and SumMe datasets demonstrate the effectiveness and superiority of our proposed method by a large margin in both F1 score and Rank-based evaluation.
Submission history
From: Jeiyoon Park [view email][v1] Tue, 5 Jul 2022 05:14:15 UTC (12,158 KB)
[v2] Mon, 21 Nov 2022 06:34:54 UTC (10,870 KB)
[v3] Fri, 20 Jan 2023 00:18:49 UTC (14,349 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.