Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Jun 2022]
Title:Deep Learning to See: Towards New Foundations of Computer Vision
View PDFAbstract:The remarkable progress in computer vision over the last few years is, by and large, attributed to deep learning, fueled by the availability of huge sets of labeled data, and paired with the explosive growth of the GPU paradigm. While subscribing to this view, this book criticizes the supposed scientific progress in the field and proposes the investigation of vision within the framework of information-based laws of nature. Specifically, the present work poses fundamental questions about vision that remain far from understood, leading the reader on a journey populated by novel challenges resonating with the foundations of machine learning. The central thesis is that for a deeper understanding of visual computational processes, it is necessary to look beyond the applications of general purpose machine learning algorithms and focus instead on appropriate learning theories that take into account the spatiotemporal nature of the visual signal.
Submission history
From: Alessandro Betti [view email][v1] Thu, 30 Jun 2022 15:20:36 UTC (26,225 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.