Computer Science > Computers and Society
[Submitted on 13 May 2022]
Title:The art of compensation: how hybrid teams solve collective risk dilemmas
View PDFAbstract:It is widely known how the human ability to cooperate has influenced the thriving of our species. However, as we move towards a hybrid human-machine future, it is still unclear how the introduction of AI agents in our social interactions will affect this cooperative capacity. Within the context of the one-shot collective risk dilemma, where enough members of a group must cooperate in order to avoid a collective disaster, we study the evolutionary dynamics of cooperation in a hybrid population made of both adaptive and fixed-behavior agents. Specifically, we show how the first learn to adapt their behavior to compensate for the behavior of the latter. The less the (artificially) fixed agents cooperate, the more the adaptive population is motivated to cooperate, and vice-versa, especially when the risk is higher. By pinpointing how adaptive agents avoid their share of costly cooperation if the fixed-behavior agents implement a cooperative policy, our work hints towards an unbalanced hybrid world. On one hand, this means that introducing cooperative AI agents within our society might unburden human efforts. Nevertheless, it is important to note that costless artificial cooperation might not be realistic, and more than deploying AI systems that carry the cooperative effort, we must focus on mechanisms that nudge shared cooperation among all members in the hybrid system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.