Mathematics > Optimization and Control
[Submitted on 30 Apr 2022 (v1), last revised 5 Jun 2024 (this version, v4)]
Title:A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization
View PDF HTML (experimental)Abstract:We present a general duality result for Wasserstein distributionally robust optimization that holds for any Kantorovich transport cost, measurable loss function, and nominal probability distribution. Assuming an interchangeability principle inherent in existing duality results, our proof only uses one-dimensional convex analysis. Furthermore, we demonstrate that the interchangeability principle holds if and only if certain measurable projection and weak measurable selection conditions are satisfied. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Additionally, we extend our analysis to other problems such as infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart.
Submission history
From: Jincheng Yang [view email][v1] Sat, 30 Apr 2022 22:49:01 UTC (768 KB)
[v2] Sun, 2 Oct 2022 22:38:38 UTC (832 KB)
[v3] Sun, 31 Dec 2023 06:15:44 UTC (51 KB)
[v4] Wed, 5 Jun 2024 00:49:35 UTC (57 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.