Computer Science > Machine Learning
[Submitted on 11 Mar 2022]
Title:Learning from Attacks: Attacking Variational Autoencoder for Improving Image Classification
View PDFAbstract:Adversarial attacks are often considered as threats to the robustness of Deep Neural Networks (DNNs). Various defending techniques have been developed to mitigate the potential negative impact of adversarial attacks against task predictions. This work analyzes adversarial attacks from a different perspective. Namely, adversarial examples contain implicit information that is useful to the predictions i.e., image classification, and treat the adversarial attacks against DNNs for data self-expression as extracted abstract representations that are capable of facilitating specific learning tasks. We propose an algorithmic framework that leverages the advantages of the DNNs for data self-expression and task-specific predictions, to improve image classification. The framework jointly learns a DNN for attacking Variational Autoencoder (VAE) networks and a DNN for classification, coined as Attacking VAE for Improve Classification (AVIC). The experiment results show that AVIC can achieve higher accuracy on standard datasets compared to the training with clean examples and the traditional adversarial training.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.