Computer Science > Computer Science and Game Theory
[Submitted on 10 Sep 2018]
Title:Constrained Existence Problem for Weak Subgame Perfect Equilibria with $ω$-Regular Boolean Objectives
View PDFAbstract:We study multiplayer turn-based games played on a finite directed graph such that each player aims at satisfying an omega-regular Boolean objective. Instead of the well-known notions of Nash equilibrium (NE) and subgame perfect equilibrium (SPE), we focus on the recent notion of weak subgame perfect equilibrium (weak SPE), a refinement of SPE. In this setting, players who deviate can only use the subclass of strategies that differ from the original one on a finite number of histories. We are interested in the constrained existence problem for weak SPEs. We provide a complete characterization of the computational complexity of this problem: it is P-complete for Explicit Muller objectives, NP-complete for Co-Büchi, Parity, Muller, Rabin, and Streett objectives, and PSPACE-complete for Reachability and Safety objectives (we only prove NP-membership for Büchi objectives). We also show that the constrained existence problem is fixed parameter tractable and is polynomial when the number of players is fixed. All these results are based on a fine analysis of a fixpoint algorithm that computes the set of possible payoff profiles underlying weak SPEs.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Mon, 10 Sep 2018 02:29:26 UTC (27 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.