\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analytic function that map the unit disk into the inside of the lemniscate of Bernoulli

  • *Corresponding author: Vaithiyanathan Ravichandran

    *Corresponding author: Vaithiyanathan Ravichandran

Dedicated to Prof. Vijay Gupta on the occasion of his 60th birthday

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The function $ \varphi_L $ defined by $ \varphi_L(z) = \sqrt{1+z} $ maps the unit disk $ \mathbb{D} $ onto $ \Omega = \{w\in\mathbb{C}: |w^2-1|<1\} $, the region in the right half-plane bounded by the lemniscate of Bernoulli $ |w^2-1| = 1 $. This paper deals with starlike functions defined on $ \mathbb{D} $ with $ zf'(z)/f(z)\in \Omega $ or equivalently $ zf'(z)/f(z) $ is subordinated to $ \varphi_L(z) $ and these functions are related to the analytic function $ p:\mathbb{D}\to \mathbb{C} $ with $ p(z)\in \Omega $ for all $ z\in \mathbb{D} $ by $ p(z) = zf'(z)/f(z) $. Using the admissibility criteria of the first and second order differential subordination, we investigate several subordination results for functions $ p $ to satisfy $ p(z)\in \Omega $. As applications, we give several sufficient conditions for functions $ f $ to satisfy $ zf'(z)/f(z)\in \Omega $.

    Mathematics Subject Classification: Primary: 30C80, 30C45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. M. AliN. E. ChoV. Ravichandran and S. Sivaprasad Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math., 16 (2012), 1017-1026.  doi: 10.11650/twjm/1500406676.
    [2] A. AralV. Gupta and  R. P. AgarwalApplications of $q$-Calculus in Operator Theory, Springer, New York, 2013. 
    [3] S. Kanas, Differential subordination related to conic sections, J. Math. Anal. Appl., 317 (2006), 650-658.  doi: 10.1016/j.jmaa.2005.09.034.
    [4] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40 (2016), 199-212. 
    [5] S. S. Kumar, V. Kumar, V. Ravichandran and N. E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), Art. 176, 13 pp. doi: 10.1186/1029-242X-2013-176.
    [6] V. MadaanA. Kumar and V. Ravichandran, Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (2019), 1937-1955.  doi: 10.2298/FIL1907937M.
    [7] R. MendirattaS. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365-386.  doi: 10.1007/s40840-014-0026-8.
    [8] E. Paprocki and J. Sokól, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94. 
    [9] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.  doi: 10.1090/S0002-9939-1993-1128729-7.
    [10] K. SharmaN. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923-939.  doi: 10.1007/s13370-015-0387-7.
    [11] K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc., 42 (2016), 761-777. 
    [12] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101-105. 
  • 加载中
SHARE

Article Metrics

HTML views(2180) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return