The function $ \varphi_L $ defined by $ \varphi_L(z) = \sqrt{1+z} $ maps the unit disk $ \mathbb{D} $ onto $ \Omega = \{w\in\mathbb{C}: |w^2-1|<1\} $, the region in the right half-plane bounded by the lemniscate of Bernoulli $ |w^2-1| = 1 $. This paper deals with starlike functions defined on $ \mathbb{D} $ with $ zf'(z)/f(z)\in \Omega $ or equivalently $ zf'(z)/f(z) $ is subordinated to $ \varphi_L(z) $ and these functions are related to the analytic function $ p:\mathbb{D}\to \mathbb{C} $ with $ p(z)\in \Omega $ for all $ z\in \mathbb{D} $ by $ p(z) = zf'(z)/f(z) $. Using the admissibility criteria of the first and second order differential subordination, we investigate several subordination results for functions $ p $ to satisfy $ p(z)\in \Omega $. As applications, we give several sufficient conditions for functions $ f $ to satisfy $ zf'(z)/f(z)\in \Omega $.
Citation: |
[1] | R. M. Ali, N. E. Cho, V. Ravichandran and S. Sivaprasad Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math., 16 (2012), 1017-1026. doi: 10.11650/twjm/1500406676. |
[2] | A. Aral, V. Gupta and R. P. Agarwal, Applications of $q$-Calculus in Operator Theory, Springer, New York, 2013. |
[3] | S. Kanas, Differential subordination related to conic sections, J. Math. Anal. Appl., 317 (2006), 650-658. doi: 10.1016/j.jmaa.2005.09.034. |
[4] | S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40 (2016), 199-212. |
[5] | S. S. Kumar, V. Kumar, V. Ravichandran and N. E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), Art. 176, 13 pp. doi: 10.1186/1029-242X-2013-176. |
[6] | V. Madaan, A. Kumar and V. Ravichandran, Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (2019), 1937-1955. doi: 10.2298/FIL1907937M. |
[7] | R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8. |
[8] | E. Paprocki and J. Sokól, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94. |
[9] | F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196. doi: 10.1090/S0002-9939-1993-1128729-7. |
[10] | K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923-939. doi: 10.1007/s13370-015-0387-7. |
[11] | K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc., 42 (2016), 761-777. |
[12] | J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101-105. |