[1]
|
E. Bae and E. Merkurjev, Convex variational methods on graphs for multiclass segmentation of high-dimensional data and point clouds, Journal of Mathematical Imaging & Vision, 58 (2017), 468-493.
doi: 10.1007/s10851-017-0713-9.
|
[2]
|
A. Ben-Dor, G. Lancia and J. Perone et al., Banishing bias from consensus sequences, Symposium on Combinatorial Pattern Matching. Springer-Verlag, 1264 (1997), 247-261.
doi: 10.1007/3-540-63220-4_63.
|
[3]
|
X. Bresson, X.-C. Tai, T. F. Chan and A. Szlam, Multi-class transductive learning based on L1 relaxations of Cheeger cut and Mumford-Shah-Potts model, Journal of Mathematical Imaging and Visionx, 49 (2014), 191-201.
doi: 10.1007/s10851-013-0452-5.
|
[4]
|
T. Chan and L. Vese, An active contour model without edges, International Conference on Scale-Space Theories in Computer Vision. Springer-Verlag, (1999), 141-151.
doi: 10.1007/3-540-48236-9_13.
|
[5]
|
J. Cheeger, A lower bound for the smallest eigenvalue of the laplacian, Problems in Analysis, (1970), 195-199.
|
[6]
|
D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009.
|
[7]
|
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing, IEEE Trans. Image Processing, 17 (2008), 1047-1060.
doi: 10.1109/TIP.2008.924284.
|
[8]
|
D. R. Fulkerson, Flows in networks, Recent Advances in Mathematical Programming, (1963), 319-331.
|
[9]
|
G. Gilboa and S. Osher., Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[10]
|
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Modeling & Simulation, 6 (2007), 595-630.
doi: 10.1137/060669358.
|
[11]
|
R. Glowinski, T. W. Pan and X. C. Tai, Some facts about operator splitting and alternating direction methods, Splitting Methods in Communication, Imaging, Science, and Engineering, 19-94, Sci. Comput., Springer, Cham, 2016.
|
[12]
|
L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11 (1992), 1074-1085.
doi: 10.1109/43.159993.
|
[13]
|
M. Hein and S. Setzer, Beyond 'spectral clustering -tight relaxations of balanced graph cuts, In Advacnces in Neural Information Processing Systems (NIPS), (2011).
|
[14]
|
M. Hein and S. Setzer, Beyond spectral clustering- tight relaxations of balanced graph cuts, In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira and K.Q.Weinberger, Editors, Advances in Neural Information Processing Systems, 24 (2011), 2366-2374.
|
[15]
|
U. V. Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), 395-416.
doi: 10.1007/s11222-007-9033-z.
|
[16]
|
M. Meila & J. Shi. Learning segmentation by random walks. Advances in Neural Information Processing Systems, 13 (2000), 873- 879.
|
[17]
|
E. Merkurjev, A. L. Bertozzi, X. Yan and K. Lerman, Modified cheeger and ratio cut methods using the ginzburg-landau functional for classification of high-dimensional data, Inverse Problems, 33 (2017), 074003, 24pp.
doi: 10.1088/1361-6420/33/7/074003.
|
[18]
|
E. Merkurjev, E. Bae, A. L. Bertozzi and X. C. Tai, Global binary optimization on graphs for classification of high-dimensional data, Journal of Mathematical Imaging and Vision, 52 (2015), 414-435.
doi: 10.1007/s10851-015-0567-y.
|
[19]
|
L. I. Rudin, S. Osher and W. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[20]
|
J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), 888-905.
|
[21]
|
A. Szlam and X. Bresson, A total variation-based graph clustering algorithm for Cheeger ratio cuts, Conference on Machine Learning, (2010), 1039-1046.
|
[22]
|
A. N. Tikhonov, Regularization of incorrectly posed problems, Sov Math, 4 (1963), 1624-1627.
|
[23]
|
D. Wagner and F. Wagner, Between min cut and graph bisection, Mathematical Foundations of Computer Science 1993 (Gdask, 1993), 711 (1993), 744-750.
doi: 10.1007/3-540-57182-5_65.
|
[24]
|
Y. Z. Zhang, Y. Jiang and Z. F. Pang, Cheeger cut model for the balanced data classification problem, Advanced Materials Research, (2013), 765-767, 730-734.
|
[25]
|
D. Zhou and B. Schlkopf, Regularization on discrete spaces, Joint Pattern Recognition Symposium, 3663 (2005), 361-368.
doi: 10.1007/11550518_45.
|
[26]
|
X. Zhu and A. B. Goldberg, Introduction to semi-supervised learning, Morgan & Claypool Publishers, (2009), 130pp.
doi: 10.2200/S00196ED1V01Y200906AIM006.
|