Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry
Abstract
:1. Introduction
Governing Model
2. Lie Symmetry Analysis
3. Modified Kudryashov’s Method
4. Generalized Arnous Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalil, T.A.; Badra, N.; Ahmed, H.M.; Rabie, W.B. Bright solitons for twin-core couplers and multiple-core couplers having polynomial law of nonlinearity using Jacobi elliptic function expansion method. Alex. Eng. J. 2022, 61, 11925–11934. [Google Scholar] [CrossRef]
- Elsherbeny, A.M.; El-Barkouky, R.; Ahmed, H.M.; El-Hassani, R.M.I.; Arnous, A.H. Optical solitons and another solutions for Radhakrishnan-Kundu-Laksmannan equation by using improved modified extended tanh-function method. Opt. Quantum Electron. 2021, 53, 718. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Akgül, A. Solitary wave solutions of time–space nonlinear fractional Schrödinger’s equation: Two analytical approaches. J. Comput. Appl. Math. 2018, 339, 147–160. [Google Scholar] [CrossRef]
- Biswas, A.; Vega-Guzman, J.; Mahmood, M.F.; Khan, S.; Zhou, Q.; Moshokoa, S.P.; Belic, M.R. Solitons in optical fiber Bragg gratings with dispersive reflectivity. Optik 2019, 182, 119–123. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Arshed, S.; Belic, M.R. Optical soliton perturbation with full nonlinearity by extended trial function method. Opt. Quantum Electron. 2018, 50, 449. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Akbulut, A.; Taşcan, F.; Akinyemi, L. A novel integration approach to study the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index. Optik 2022, 252, 168529. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law nonlinearity by extended trial function method. Optik 2019, 183, 595–601. [Google Scholar] [CrossRef]
- Biswas, A.; Vega-Guzman, J.; Mahmood, M.F.; Ekici, M.; Zhou, Q.; Moshokoa, S.P.; Belic, M.R. Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law nonlinearity using undetermined coefficients. Optik 2019, 185, 39–44. [Google Scholar] [CrossRef]
- Darwish, A.; El-Dahab, E.A.; Ahmed, H.; Arnous, A.H.; Ahmed, M.S.; Biswas, A.; Guggilla, P.; Yıldırım, Y.; Mallawi, F.; Belic, M.R. Optical solitons in fiber Bragg gratings via modified simple equation. Optik 2020, 203, 163886. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Shohib, R.M.A.; Biswas, A.; Yıldırım, Y.; Mallawi, F.; Belic, M.R. Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive reflectivity having parabolic law nonlinearity by Jacobi’s elliptic function. Results Phys. 2019, 15, 102784. [Google Scholar] [CrossRef]
- Malik, S.; Kumar, S.; Biswas, A.; Ekici, M.; Dakova, A.; Alzahrani, A.K.; Belic, M.R. Optical solitons and bifurcation analysis in fiber Bragg gratings with Lie symmetry and Kudryashov’s approach. Nonlinear Dyn. 2021, 105, 735–751. [Google Scholar] [CrossRef]
- Aceves, A.; Wabnitz, S. Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 1989, 141, 37–42. [Google Scholar] [CrossRef]
- Christodoulides, D.N.; Joseph, R.I. Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 1989, 62, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Martin de Sterke, C.; Sipe, J. III—Gap Solitons. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 33, pp. 203–260. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A. Families of Bragg-grating solitons in a cubic–quintic medium. Phys. Lett. A 2001, 284, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Atai, J.; Malomed, B.A. Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 2005, 342, 404–412. [Google Scholar] [CrossRef]
- Neill, D.R.; Atai, J.; Malomed, B.A. Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J. Opt. A Pure Appl. Opt. 2008, 10, 085105. [Google Scholar] [CrossRef]
- Fan, E.; Zhang, J. Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 2002, 305, 383–392. [Google Scholar] [CrossRef]
- Zahran, E.H.M.; Khater, M.M.A. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 2016, 40, 1769–1775. [Google Scholar] [CrossRef]
- Christov, O.; Hakkaev, S. On the inverse scattering approach and action-angle variables for the Dullin–Gottwald–Holm equation. Phys. D Nonlinear Phenom. 2009, 238, 9–19. [Google Scholar] [CrossRef]
- Constantin, A.; Redou, P. On the inverse scattering approach to the Camassa-Holm equation. J. Nonlinear Math. Phys. 2003, 10, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, Y.; Lin, M.J. A Wronskian formulation of the (3+1)-dimensional generalized BKP equation. Phys. Scr. 2013, 88, 015002. [Google Scholar] [CrossRef]
- Kumar, S.; Malik, S.; Rezazadeh, H.; Akinyemi, L. The integrable Boussinesq equation and it’s breather, lump and soliton solutions. Nonlinear Dyn. 2022, 107, 2703–2716. [Google Scholar] [CrossRef]
- Malik, S.; Kumar, S.; Das, A. A (2+1)-dimensional combined KdV–mKdV equation: Integrability, stability analysis and soliton solutions. Nonlinear Dyn. 2022, 107, 2689–2701. [Google Scholar] [CrossRef]
- Kaur, L.; Wazwaz, A.M. Dynamical analysis of lump solutions for (3+1) dimensional generalized KP–Boussinesq equation and its dimensionally reduced equations. Phys. Scr. 2018, 93, 075203. [Google Scholar] [CrossRef]
- Kumar, S.; Malik, S. The (3+1)-dimensional Benjamin-Ono equation: Painlevé analysis, rogue waves, breather waves and soliton solutions. Int. J. Mod. Phys. B 2022, 36, 2250119. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, R.K. Dispersion analysis and improved F-expansion method for space–time fractional differential equations. Nonlinear Dyn. 2019, 96, 837–852. [Google Scholar] [CrossRef]
- Kudryashov, N.A. A note on the (G′/G)-expansion method. Appl. Math. Comput. 2010, 217, 1755–1758. [Google Scholar]
- Bekir, A. Application of the (G′/G)-expansion method for nonlinear evolution equations. Phys. Lett. A 2008, 372, 3400–3406. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, D.; Cong, G.; Jin, D.; Borjalilou, V. Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media 2021, 95, 1–20. [Google Scholar] [CrossRef]
- Jhangeer, A.; Hussain, A.; Junaid-U-Rehman, M.; Baleanu, D.; Riaz, M.B. Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos Solitons Fractals 2021, 143, 110578. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.S.; Rezazadeh, H.; Eslami, M.; Neirameh, A.; Mirzazadeh, M. Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 267–278. [Google Scholar]
- Srivastava, H.M.; Baleanu, D.; Machado, J.; Osman, M.S.; Rezazadeh, H.; Arshed, S.; Günerhan, H. Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Phys. Scr. 2020, 95, 075217. [Google Scholar] [CrossRef]
- Malik, S.; Kumar, S. Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach. Optik 2022, 258, 168865. [Google Scholar] [CrossRef]
- Arnous, A.H. Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity using new approach. Optik 2022, 251, 168356. [Google Scholar] [CrossRef]
- Yıldırım, Y.; Biswas, A.; Jawad, A.J.M.; Ekici, M.; Zhou, Q.; Khan, S.; Alzahrani, A.K.; Belic, M.R. Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 2020, 16, 102913. [Google Scholar] [CrossRef]
- Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Alshehri, H.M.; Maturi, D.A.; Al-Bogami, D.H. Cubic–quartic optical soliton perturbation with differential group delay for the Lakshmanan–Porsezian–Daniel model by Lie symmetry. Symmetry 2022, 14, 224. [Google Scholar] [CrossRef]
- Zahran, E.H.M.; Bekir, A. New private types for the cubic-quartic optical solitons in birefringent fibers in its four forms of nonlinear refractive index. Opt. Quantum Electron. 2021, 53, 1–32. [Google Scholar] [CrossRef]
- Kumar, S.; Malik, S. Cubic-quartic optical solitons with Kudryashov’s law of refractive index by Lie symmetry analysis. Optik 2021, 242, 167308. [Google Scholar] [CrossRef]
- Özkan, Y.S.; Eslami, M.; Rezazadeh, H. Pure cubic optical solitons with improved tan(φ/2)-expansion method. Opt. Quantum Electron. 2021, 53, 566. [Google Scholar] [CrossRef]
- Biswas, A.; Kara, A.H.; Sun, Y.; Zhou, Q.; Yıldırım, Y.; Alshehri, H.M.; Belic, M.R. Conservation laws for pure-cubic optical solitons with complex Ginzburg–Landau equation having several refractive index structures. Results Phys. 2021, 31, 104901. [Google Scholar] [CrossRef]
- Arnous, A.H.; Zhou, Q.; Biswas, A.; Guggilla, P.; Khan, S.; Yıldırım, Y.; Alshomrani, A.S.; Alshehri, H.M. Optical solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 2022, 422, 127797. [Google Scholar] [CrossRef]
- Bluman, G.; Anco, S. Symmetry and Integration Methods for Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 154. [Google Scholar]
- Kumar, S.; Malik, S.; Biswas, A.; Zhou, Q.; Moraru, L.; Alzahrani, A.K.; Belic, M.R. Optical solitons with Kudryashov’s equation by Lie symmetry analysis. Phys. Wave Phenom. 2020, 28, 299–304. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; Volume 107. [Google Scholar]
- Wang, G.; Yang, K.; Gu, H.; Guan, F.; Kara, A.H. A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nucl. Phys. B 2020, 953, 114956. [Google Scholar] [CrossRef]
- Anam, N.; Atai, J. Dynamics of colliding Bragg solitons in a dual-core system with separated grating and cubic-quartic nonlinearity. In Proceedings of the 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Torino, Italy, 12–16 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 205–206. [Google Scholar]
- Anam, N.; Atai, J. Moving Bragg Solitons in a Coupler with Separated Grating and Cubic-Quintic Nonlinearity. In Proceedings of the 2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 13–17 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 105–106. [Google Scholar]
- Anam, N.; Ahmed, T.; Atai, J. Bragg Grating Solitons in a Dual-core System with Separated Bragg Grating and Cubic-quintic Nonlinearity. In Proceedings of the Photoptics, Prague, Czech Republic, 25–27 February 2019; pp. 24–28. [Google Scholar]
- Atai, J. Interaction of Bragg grating solitons in a cubic–quintic medium. J. Opt. B Quantum Semiclassical Opt. 2004, 6, S177. [Google Scholar] [CrossRef]
- Gandzha, I.; Sedletsky, Y. Bright and dark solitons on the surface of finite-depth fluid below the modulation instability threshold. Phys. Lett. A 2017, 381, 1784–1790. [Google Scholar] [CrossRef] [Green Version]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Barashenkov, I. Stability criterion for dark solitons. Phys. Rev. Lett. 1996, 77, 1193. [Google Scholar] [CrossRef]
- Bogdan, M.; Kovalev, A.; Kosevich, A. Stability-Criterion in Imperfect Bose-Gas. Fiz. Nizk. Temp. 1989, 15, 511–514. [Google Scholar]
- Kivshar, Y.S.; Królikowski, W. Instabilities of dark solitons. Opt. Lett. 1995, 20, 1527–1529. [Google Scholar] [CrossRef]
- Jones, C.; Roberts, P. Motions in a Bose condensate. IV. Axisymmetric solitary waves. J. Phys. A Math. Gen. 1982, 15, 2599. [Google Scholar] [CrossRef]
- Kuznetsov, E.; Rasmussen, J.J. Instability of two-dimensional solitons and vortices in defocusing media. Phys. Rev. E 1995, 51, 4479. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Alshehri, H.M. Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry. Symmetry 2022, 14, 2370. https://doi.org/10.3390/sym14112370
Malik S, Kumar S, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Iticescu C, Alshehri HM. Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry. Symmetry. 2022; 14(11):2370. https://doi.org/10.3390/sym14112370
Chicago/Turabian StyleMalik, Sandeep, Sachin Kumar, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, and Hashim M. Alshehri. 2022. "Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry" Symmetry 14, no. 11: 2370. https://doi.org/10.3390/sym14112370
APA StyleMalik, S., Kumar, S., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Iticescu, C., & Alshehri, H. M. (2022). Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry. Symmetry, 14(11), 2370. https://doi.org/10.3390/sym14112370