Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Accuracy and Precision Estimates
2.4. Potential Factors Considered as an Influence on GNSS Accuracy and Precision
- GNSS factors: Point Dilution of Precision (PDOP), Horizontal Dilution of Precision (HDOP), Vertical Dilution of Precision (VDOP), number of visible satellites and the proportion of Float/DGPS solutions.
- Environmental factors: ground slope (calculated from a DTM interpolated at a 5 m resolution from ZTruth values), forest composition (which test plot the points belong to) and NDVI (calculated in Google Earth Engine at a 20 m resolution from cloud-free Sentinel-2 imagery collected between 2022 and 2024).
- Factors related to tree locations: distance to the nearest tree, number of trees within radii of 2, 4, 6, 8 and 10 m around each point and the average distance to trees in these radii.
3. Results
3.1. GNSS Accuracy in Coniferous/Deciduous Forest Conditions
3.2. Variation in GNSS Conditions under the Forest Canopy
3.3. Distribution of Trees around Test Points
3.4. Importance of Factor Variation on GNSS Accuracy
- When all points are considered together: Species is significant for both horizontal and vertical accuracy, while No. of satellites and Slope are significant only for vertical accuracy.
- For the coniferous plot: No. of trees in a 4 m radius and Distance to nearest tree are significant for horizontal accuracy, while no factors are identified as significant for vertical accuracy.
- For the deciduous plot: no factors are identified as significant for either horizontal or vertical accuracy.
- When all points are considered together: PDOP and No. of satellites are significant for horizontal/vertical precision, while Species and Slope are significant only for horizontal and vertical precision, respectively.
- For the coniferous plot: No. of satellites is significant for horizontal precision, with no significant factors for vertical precision.
- For the deciduous plot: PDOP is significant for horizontal precision, while Slope is significant for vertical precision.
3.5. Level of Agreement between GNSS Accuracy and Precision
4. Discussion
4.1. GNSS Accuracy in Coniferous/Deciduous Forest Conditions
4.2. GNSS Solution Type under the Forest Canopy
4.3. Relative Importance of Factors for GNSS Accuracy/Precision
4.4. On Accuracy vs. Precision of GNSS-Determined Positions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomaštík, J.; Varga, M. Practical Applicability of Processing Static, Short-Observation-Time Raw GNSS Measurements Provided by a Smartphone under Tree Vegetation. Measurement 2021, 178, 109397. [Google Scholar] [CrossRef]
- Bettinger, P.; Merry, K.; Bayat, M.; Tomaštík, J. GNSS Use in Forestry—A Multi-National Survey from Iran, Slovakia and Southern USA. Comput. Electron. Agric. 2019, 158, 369–383. [Google Scholar] [CrossRef]
- Weaver, S.A.; Ucar, Z.; Bettinger, P.; Merry, K. How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy. PLoS ONE 2015, 10, e0124696. [Google Scholar] [CrossRef]
- D’Eon, S.P. Forest Canopy Interference with GPS Signals at Two Antenna Heights. North. J. Appl. For. 1996, 13, 89–91. [Google Scholar] [CrossRef]
- Næsset, E. Point Accuracy of Combined Pseudorange and Carrier Phase Differential GPS under Forest Canopy. Can. J. For. Res. 1999, 29, 547–553. [Google Scholar] [CrossRef]
- Bettinger, P.; Fei, S. One Year’s Experience with a Recreation-Grade GPS Receiver. Math. Comput. Nat. Resour. Sci. 2010, 2, 153–160. [Google Scholar]
- Bastos, A.S.; Hasegawa, H. Behavior of GPS Signal Interruption Probability under Tree Canopies in Different Forest Conditions. Eur. J. Remote Sens. 2013, 46, 613–622. [Google Scholar] [CrossRef]
- Bettinger, P.; Merry, K. Influence of the Juxtaposition of Trees on Consumer-Grade GPS Position Quality. Math. Comput. Nat. Resour. Sci. 2012, 4, 81–91. [Google Scholar]
- Hasegawa, H.; Yoshimura, T. Application of Dual-Frequency GPS Receivers for Static Surveying under Tree Canopies. J. For. Res. 2003, 8, 0103–0110. [Google Scholar] [CrossRef]
- Becker, R.M.; Keefe, R.F.; Anderson, N.M. Use of Real-Time GNSS-RF Data to Characterize the Swing Movements of Forestry Equipment. Forests 2017, 8, 44. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Vastaranta, M.; Kukko, A.; Jaakkola, A.; Yu, X.; Pyörälä, J.; Liang, X.; Liu, J.; Wang, Y.; et al. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests 2015, 6, 3218–3236. [Google Scholar] [CrossRef]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining National Forest Inventory Field Plots and Remote Sensing Data for Forest Databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- Allan, B.M.; Arnould, J.P.Y.; Martin, J.K.; Ritchie, E.G. A Cost-Effective and Informative Method of GPS Tracking Wildlife. Wildl. Res. 2013, 40, 345–348. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Hoque, M.M. Evaluation of Ionospheric Delay Effects on Multi-GNSS Positioning Performance. Remote Sens. 2019, 11, 171. [Google Scholar] [CrossRef]
- Næsset, E.; Gjevestad, J.G. Performance of GPS Precise Point Positioning Under Conifer Forest Canopies. Photogramm. Eng. Remote Sens. 2008, 74, 661–668. [Google Scholar] [CrossRef]
- Berber, M.; Arslan, N. Network RTK: A Case Study in Florida. Measurement 2013, 46, 2798–2806. [Google Scholar] [CrossRef]
- Enge, P.; Walter, T.; Pullen, S.; Kee, C.; Chao, Y.-C.; Tsai, Y.-J. Wide Area Augmentation of the Global Positioning System. Proc. IEEE 1996, 84, 1063–1088. [Google Scholar] [CrossRef]
- Gauthier, L.; Michel, P.; Ventura-Traveset, J.; Benedicto, J. EGNOS: The First Step in Europe’s Contribution to the Global Navigation Satellite System. ESA Bull. 2001, 105, 35–42. [Google Scholar]
- Ordóñez Galán, C.; Rodríguez-Pérez, J.R.; Martínez Torres, J.; García Nieto, P.J. Analysis of the Influence of Forest Environments on the Accuracy of GPS Measurements by Using Genetic Algorithms. Math. Comput. Model. 2011, 54, 1829–1834. [Google Scholar] [CrossRef]
- Vallet García, J.M.; Bhuiyan, M.Z.H. RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland. Sensors 2024, 24, 621. [Google Scholar] [CrossRef]
- Du, L.; Chen, H.; Yuan, Y.; Song, L.; Meng, X. Global Navigation Satellite System Receiver Positioning in Harsh Environments via Clock Bias Prediction by Empirical Mode Decomposition and Back Propagation Neural Network Method. Sensors 2024, 24, 2342. [Google Scholar] [CrossRef]
- Zhu, F.; Hu, Z.; Liu, W.; Zhang, X. Dual-Antenna GNSS Integrated with MEMS for Reliable and Continuous Attitude Determination in Challenged Environments. IEEE Sens. J. 2019, 19, 3449–3461. [Google Scholar] [CrossRef]
- Fredeluces, E.; Ozeki, T.; Kubo, N.; El-Mowafy, A. Modified RTK-GNSS for Challenging Environments. Sensors 2024, 24, 2712. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Sun, X. A Multi-Scale Anti-Multipath Algorithm for GNSS-RTK Monitoring Application. Sensors 2023, 23, 8396. [Google Scholar] [CrossRef]
- Bakula, M.; Przestrzelski, P.; Kazmierczak, R. Reliable Technology of Centimeter GPS/GLONASS Surveying in Forest Environments. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1029–1038. [Google Scholar] [CrossRef]
- Lee, T.; Bettinger, P.; Merry, K.; Cieszewski, C. The Effects of Nearby Trees on the Positional Accuracy of GNSS Receivers in a Forest Environment. PLoS ONE 2023, 18, e0283090. [Google Scholar] [CrossRef]
- Piedallu, C.; Gégout, J.-C. Effects of Forest Environment and Survey Protocol on GPS Accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 1071–1078. [Google Scholar] [CrossRef]
- Deckert, C.; Bolstad, P.V. Forest Canopy, Terrain, and Distance Effects on Global Positioning System Point Accuracy. Photogramm. Eng. Remote Sens. 1996, 62, 317–321. [Google Scholar]
- Pirti, A.; Gumus, K.; Erkaya, H.; Hosbas, R.G. Evaluating Repeatability of RTK GPS/GLONASS Near/Under Forest Environment. Croat. J. For. Eng. 2010, 31, 23–33. [Google Scholar]
- Feng, T.; Chen, S.; Feng, Z.; Shen, C.; Tian, Y. Effects of Canopy and Multi-Epoch Observations on Single-Point Positioning Errors of a GNSS in Coniferous and Broadleaved Forests. Remote Sens. 2021, 13, 2325. [Google Scholar] [CrossRef]
- Naesset, E.; Jonmeister, T. Assessing Point Accuracy of DGPS Under Forest Canopy Before Data Acquisition, in the Field and After Postprocessing. Scand. J. For. Res. 2002, 17, 351–358. [Google Scholar] [CrossRef]
- Ogundipe, O.; Ince, S.; Bonenberg, K. GNSS Positioning under Forest Canopy. Disponível. 2014. Available online: https://www.researchgate.net (accessed on 15 August 2024).
- Rodríguez-Pérez, J.R.; Álvarez, M.F.; Sanz-Ablanedo, E. Assessment of Low-Cost GPS Receiver Accuracy and Precision in Forest Environments. J. Surv. Eng. 2007, 133, 159–167. [Google Scholar] [CrossRef]
- Lee, T.; Bettinger, P.; Cieszewski, C.J.; Gutierrez Garzon, A.R. The Applicability of Recreation-Grade GNSS Receiver (GPS Watch, Suunto Ambit Peak 3) in a Forested and an Open Area Compared to a Mapping-Grade Receiver (Trimble Juno T41). PLoS ONE 2020, 15, e0231532. [Google Scholar] [CrossRef] [PubMed]
- Murgaš, V.; Sačkov, I.; Sedliak, M.; Tunák, D.; Chudý, F. Assessing Horizontal Accuracy of Inventory Plots in Forests with Different Mix of Tree Species Composition and Development Stage. J. For. Sci. 2018, 64, 478–485. [Google Scholar] [CrossRef]
- Pirti, A.; Yucel, M.A. Evaluating Repeatability of RTK (GPS and Galileo/GPS) Performance in the Analysis of Points Located in Areas with and without Obstructions. Rep. Geod. Geoinform. 2022, 113, 11–20. [Google Scholar] [CrossRef]
- Bakula, M.; Pelc-Mieczkowska, R.; Walawski, M. Reliable and Redundant Rtk Positioning for Applications in Hard Observational Conditions. Artif. Satell.-J. Planet. Geod. 2012, 47, 23–33. [Google Scholar] [CrossRef]
- Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t Statistic Under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309–335. [Google Scholar] [CrossRef]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. LiDAR-Based Structural Health Monitoring: Applications in Civil Infrastructure Systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef]
- Xu, G.; Xu, Y. GPS: Theory, Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-50365-2. [Google Scholar]
- Bakula, M.; Oszczak, S.; Pelc-Mieczkowska, R. Performance of RTK Positioning in Forest Conditions: Case Study. J. Surv. Eng.-ASCE 2009, 135, 125–130. [Google Scholar] [CrossRef]
- Sigrist, P.; Coppin, P.; Hermy, M. Impact of Forest Canopy on Quality and Accuracy of GPS Measurements. Int. J. Remote Sens. 1999, 20, 3595–3610. [Google Scholar] [CrossRef]
- Valbuena, R.; Mauro, F.; Rodriguez-Solano, R.; Manzanera, J.A. Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span. J. Agric. Res. 2010, 8, 1047–1057. [Google Scholar] [CrossRef]
- Danskin, S.D.; Bettinger, P.; Jordan, T.R.; Cieszewski, C. A Comparison of GPS Performance in a Southern Hardwood Forest: Exploring Low-Cost Solutions for Forestry Applications. South. J. Appl. For. 2009, 33, 9–16. [Google Scholar] [CrossRef]
Test Plot | Avg. Slope (Deg) | Stand Age (Years) | Volume (m3/ha) | Canopy Closure (%) | Aspect |
---|---|---|---|---|---|
Coniferous (pine) | 15 | 105 | 393 | 80 | S-W |
Deciduous (beech/oak) | 10 | 110 | 169 | 54 | N-NW |
Point no. | X (Easting) (m) 1 | Y (Northing) (m) 1 | Z (m) 2 |
---|---|---|---|
1 | 550,791.879 | 468,996.465 | 597.852 |
550,791.828 | 468,996.423 | 597.771 | |
Diff. | 0.051 | 0.042 | 0.081 |
2 | 550,772.404 | 550,772.479 | 605.206 |
550,909.363 | 550,772.404 | 605.194 | |
Diff. | 0.041 | 0.075 | 0.012 |
7 3 | 550,909.363 | 468,957.217 | 617.306 |
550,909.353 | 468,957.209 | 617.268 | |
Diff. | 0.010 | 0.008 | 0.038 |
8 | 550,985.187 | 469,003.180 | 649.158 |
550,985.181 | 469,003.165 | 649.151 | |
Diff. | 0.006 | 0.015 | 0.007 |
14 | 551,034.388 | 469,007.828 | 652.018 |
551,034.387 | 469,007.824 | 652.005 | |
Diff. | 0.001 | 0.004 | 0.013 |
Sample | MAE (m) | Bias (m) | Median Error (m) | Std. Dev. (m) | Min. Error (m) | Max. Error (m) | RMSE (m) |
---|---|---|---|---|---|---|---|
Horizontal accuracy | |||||||
All observations (n = 89) | 1.63 | - | 1.28 | 1.21 | 0.15 | 6.74 | 2.03 |
Pine observations (n = 24) | 2.07 | - | 2.07 | 1.36 | 0.32 | 5.66 | 2.47 |
Beech/oak observations (n = 65) | 1.47 | - | 1.21 | 1.12 | 0.15 | 6.74 | 1.84 |
Vertical accuracy | |||||||
All observations (n = 89) | 4.01 | 3.96 | 3.47 | 2.82 | −1.46 | 12.80 | 4.85 |
Pine observations (n = 24) | 4.45 | 4.40 | 3.61 | 2.92 | −1.46 | 12.80 | 5.27 |
Beech/oak observations (n = 65) | 2.81 | 2.76 | 2.65 | 2.18 | −0.61 | 9.00 | 3.49 |
Factor | Mean | Median | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Sample: all observations (n = 89) | |||||
PDOP | 1.92 | 1.77 | 0.52 | 1.27 | 3.58 |
HDOP | 1.06 | 1.00 | 0.31 | 0.70 | 2.10 |
VDOP | 1.62 | 1.49 | 0.49 | 1.06 | 3.29 |
No. of satellites | 13.24 | 13.00 | 2.01 | 8 | 23 |
Float solutions (out of 30) | 0.91 | 0.00 | 2.63 | 0 | 14 |
Sample: pine observations (n = 24) | |||||
PDOP | 1.97 | 1.84 | 0.49 | 1.34 | 3.46 |
HDOP | 1.17 | 1.10 | 0.38 | 0.70 | 2.10 |
VDOP | 1.65 | 1.53 | 0.44 | 1.12 | 3.25 |
No. of satellites | 13.88 | 13.50 | 2.25 | 11 | 23 |
Float solutions (out of 30) | 1.38 | 0.00 | 3.02 | 0 | 13 |
Sample: beech/oak observations (n = 65) | |||||
PDOP | 1.90 | 1.70 | 0.54 | 1.27 | 3.58 |
HDOP | 1.02 | 0.90 | 0.27 | 0.70 | 2.00 |
VDOP | 1.61 | 1.41 | 0.51 | 1.06 | 3.29 |
No. of satellites | 13.00 | 13.00 | 1.87 | 8 | 16 |
Float solutions (out of 30) | 0.74 | 0.00 | 2.48 | 0 | 14 |
Radius Considered (Meters) | Avg. no. of Trees | Min. no. of Trees | Max. no. of Trees | Std. Dev. of the no. of Trees |
---|---|---|---|---|
2 | 0.34 | 0 | 4 | 0.64 |
4 | 1.71 | 0 | 5 | 1.21 |
6 | 4.19 | 0 | 11 | 2.31 |
8 | 7.61 | 0 | 16 | 3.66 |
10 | 11.99 | 1 | 25 | 5.74 |
Metric | Sample | Proportion of Variation Explained (%) | Most Important Factors 1 |
---|---|---|---|
Horizontal accuracy | All points | 25.45 | NDVI (19%), Species (11%), No. of trees in a 4 m radius (9%), No. of satellites (8%) |
Vertical accuracy | All points | 27.40 | Slope (22%), Species (19%), No. of satellites (9%), No. of trees in an 8 m radius (9%) |
Horizontal accuracy | Coniferous | 85.63 | No. of trees in a 4 m radius (18%), Distance to nearest tree (17%), Avg. dist. to trees in a 4 m radius (13%), No. of satellites (8%) |
Vertical accuracy | Coniferous | 85.60 | No. of trees in a 10 m radius (18%), Slope (14%), No. of Float solutions (12%), No. of trees in an 8 m radius (10%) |
Horizontal accuracy | Deciduous | 17.62 | No. of satellites (16%), No. of trees in a 10 m radius (15%), No. of trees in an 8 m radius (13%), NDVI (11%) |
Vertical accuracy | Deciduous | 28.78 | Slope (23%), Avg. dist. to trees in a 4 m radius (15%), NDVI (14%), No. of satellites (8%) |
Horizontal precision | All points | 39.82 | PDOP (40%), HDOP (20%), No. of satellites (13%), Species (9%) |
Vertical precision | All points | 45.41 | PDOP (31%), VDOP (29%), No. of satellites (12%), Slope (8%) |
Horizontal precision | Coniferous | 97.81 | No. of satellites (33%), Slope (11%), No. of trees in an 8 m radius (10%), No. of trees in a 6 m radius (7%) |
Vertical precision | Coniferous | 85.60 | No. of trees in a 10 m radius (18%), Slope (14%), No. of Float solutions (12%), No. of trees in an 8 m radius (10%) |
Horizontal precision | Deciduous | 55.65 | PDOP (30%), HDOP (28%), No. of satellites (11%), No. of trees in a 10 m radius (5%) |
Vertical precision | Deciduous | 28.78 | Slope (23%), Avg. dist. to trees in a 4 m radius (15%), NDVI (14%), Distance to nearest tree (7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cățeanu, M.; Moroianu, M.A. Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas. Sensors 2024, 24, 6404. https://doi.org/10.3390/s24196404
Cățeanu M, Moroianu MA. Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas. Sensors. 2024; 24(19):6404. https://doi.org/10.3390/s24196404
Chicago/Turabian StyleCățeanu, Mihnea, and Maria Alexandra Moroianu. 2024. "Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas" Sensors 24, no. 19: 6404. https://doi.org/10.3390/s24196404
APA StyleCățeanu, M., & Moroianu, M. A. (2024). Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas. Sensors, 24(19), 6404. https://doi.org/10.3390/s24196404