Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Related Work
1.2.1. Research Areas
1.2.2. Two-Dimensional Analysis of Structural Geometry
1.2.3. Point Cloud Differentiation
1.2.4. Comparison of TLS Data with Theoretical Model
1.3. Research Significance
2. Materials and Methods
2.1. Investigated Hyperboloid Cooling Tower
- A height of 65.15 m;
- A height at throat level of 51.55 m;
- A radius at the level of the bottom ring of 21.52 m;
- A throat radius of 12.75 m;
- A radius at the level of the top ring of 13.52 m.
2.2. Empirical Measurement Method
2.3. Point Cloud Registration and Georeferencing
- The indirect method based on artificial reference points (well-defined targets or reference spheres in point clouds). It is the most common method in engineering due to its reliability and accuracy, but the latter depends on the even distribution and fixed position of tie points [82].
- The cloud-to-cloud method based on the IPC (iterative closest point) algorithm [50]. Each iteration reduces the distance between two point clouds until the minimum value is reached. Still, it has to be initiated with a pre-registration, requires at least 30% overlap, and data free of objects changing over the measurement time (such as trees) [83].
2.4. Deviation from Plumb: Verification of Roundness of Cross-Sections
2.5. Shell Thickness Map: Reduction of Measurements to the Internal Surface
2.6. Estimation of a Theoretical Model and Geometric Imperfection Analysis
3. Results and Discussion
3.1. TLS Data Registration and Georeferencing
3.2. Deviation from Plumb: Verification of Roundness of Cross-Sections
3.3. Cooling Tower Shell Thickness
3.4. Estimation of Theoretical Parameters and Geometric Imperfection Analysis
4. Conclusions and Future Work
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harte, R.; Krätzig, W.B. Large-scale cooling towers as part of an efficient and cleaner energy generating technology. Thin Walled Struct. 2002, 40, 651–664. [Google Scholar] [CrossRef]
- Wenzel, P.M.; Mühlen, M.; Radgen, P. Free Cooling for Saving Energy: Technical Market Analysis of Dry, Wet, and Hybrid Cooling Based on Manufacturer Data. Energies 2023, 16, 3661. [Google Scholar] [CrossRef]
- Táboas, F.; Vázquez, F. Pressure Drops and Energy Consumption Model of Low-Scale Closed Circuit Cooling Towers. Processes 2021, 9, 974. [Google Scholar] [CrossRef]
- Bernardello, R.A.; Borin, P. Form follows function in a hyperboloidical cooling Tower. Nexus Netw. J. 2022, 24, 587–601. [Google Scholar] [CrossRef]
- Bamu, P.C.; Zingoni, A. Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years. Eng. Struct. 2005, 27, 1794–1800. [Google Scholar] [CrossRef]
- Asadzadeh, E.; Alam, M. A Survey on Hyperbolic Cooling Towers. Int. J. Civ. Struct. Constr. Archit. Eng. 2014, 8, 1027–1039. [Google Scholar] [CrossRef]
- Lingaraju, M.K.C.; Girisha, S.K.; Channabasappa, S.B.; Karigowda, M.A. Study on Dynamic Behavior of Natural Draft Cooling Tower Considering the Effect of Soil-Structure Interaction. Civ. Environ. Eng. Rep. 2021, 31, 17–32. [Google Scholar] [CrossRef]
- Zahradník, D. Cooling tower measurement by laser scanner and close-range photogrammetry. AIP Conf. Proc. 2023, 2928, 150026. [Google Scholar] [CrossRef]
- Hojdys, Ł.; Krajewski, P.; Seręga, S.; Płachecki, M. Stan techniczny powłoki żelbetowej hiperboloidalnej chłodni kominowej z dużymi imperfekcjami po 35 latach użytkowania [The technical condition of the reinforced concrete shell of a hyperboloid cooling tower with significant imperfections after 35 years of use]. Przegląd Bud. 2012, 83, 71–74. [Google Scholar]
- Makuch, M. Application of Terrestrial Laser Scanning in the Process of Modernization of Hyperboloid Cooling Towers. Ph.D. Thesis, Faculty of Environmental Engineering and Land Surveying, University of Agriculture, Krakow, Poland, 21 March 2018. (In Polish). [Google Scholar]
- Kocierz, R.; Rebisz, M.; Łukasz, O. Measurement point density and measurement methods in determining the geometric imperfections of shell surfaces. Rep. Geod. Geoinform. 2018, 105, 19–28. [Google Scholar] [CrossRef]
- Wenjie, L.; Shitang, K.; Yang, J.; Wu, H.; Wang, F.; Han, G. Wind-induced collapse mechanism and failure criteria of super-large cooling tower based on layered shell element model. J. Wind Eng. Ind. Aerodyn. 2022, 221, 104907. [Google Scholar] [CrossRef]
- Kamiński, M. Wybrane problemy diagnostyki i oceny stanu technicznego chłodni kominowych [Selected problems of diagnostics and assessment of the technical condition of cooling towers]. Przegląd Bud. 2010, 81, 51–54. [Google Scholar]
- Ejsymont, M.; Prusiel, J.A. Analiza dynamiczna chłodni kominowych [Dynamic analysis of cooling towers]. Przegląd Bud. 2023, 11, 192–198. [Google Scholar] [CrossRef]
- Głowacki, T.; Muszyński, Z. Analysis of cooling tower’s geometry by means of geodetic and thermovision method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 042075. [Google Scholar] [CrossRef]
- Muszyński, Z. Zastosowanie metody Hampela do aproksymacji modelu teoretycznego chłodni kominowej w podejściu dwuwymiarowym [Application of the Hampel’s method to approximate a theoretical model of the cooling tower in the two-dimensional approach]. Arch. Fotogram. Kartogr. I Teledetekcji 2013, 25, 117–126. [Google Scholar]
- Zdanowicz, K. Geodezyjny monitoring deformacji powierzchni hiperboloidalnych chłodni kominowych [Geodetic monitoring of surface deformation of hyperboloid cooling towers]. Czas. Tech. Bud. 2011, 108, 207–218. [Google Scholar]
- Gould, P.L.; Krätzig, W.B. Cooling Tower Structures, Structural Engineering Handbook; Wai-Fah, C., Ed.; CRC Press LLC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Ioannidis, C.; Valani, A.; Georgopoulos, A.; Tsiligiris, E. 3D model generation for deformation analysis using laser scanning data of a cooling tower. In Proceedings of the 3rd IAG 12th FIG Symposium on Deformation Measurements, Baden, Austria, 1 May 2006; pp. 22–24. [Google Scholar]
- Camp, G.; Carreaud, P.; Lançon, H. Large Structures: Which Solutions for Health Monitoring? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W2, 137–141. [Google Scholar] [CrossRef]
- Piot, S.; Lancon, H. New Tools for the Monitoring of Cooling Towers. In Proceedings of the 6th European Workshop on Strutural Health Montoring, Dresden, Germany, 3–6 July 2012. [Google Scholar]
- Antoniszyn, K.; Hawro, L.; Konderla, P.; Kutyłowski, R. Wybrane problemy procesów modernizacji i remontów chłodni kominowych. [Selected issues with upgrading and repairing cooling towers]. Mater. Bud. 2016, 5, 24–25. [Google Scholar] [CrossRef]
- Tan, G. Application of 3D Laser Scanner in the Deformation Monitoring of Cooling Towers in Power Plant. Electr. Power Surv. Des. 2009, 4, 30–32. [Google Scholar]
- Holst, C.; Kuhlmann, H. Challenges and present fields of action at laser scanner based deformation analyses. In Proceedings of the 3rd Joint International Symposium on Deformation Monitoring (JISDM), Vienna, Austria, 30 March–1 April 2016. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Gordon, S.J.; Lichti, D.D. Modelling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 2007, 133, 72–80. [Google Scholar] [CrossRef]
- Vosselman, G.; Mass, H.G. Airborne and Terrestrial Laser Scanning; CRC Press: Boca Raton, FL, USA; Whittles Publishing: Dunbeath, UK, 2010. [Google Scholar]
- Vezocnik, R.; Ambrozic, T.; Sterle, O.; Bilban, G.; Pfeifer, N.; Stopar, B. Use of terrestrial laser scanning technology for long term high precision deformation monitoring. Sensors 2009, 9, 9873–9895. [Google Scholar] [CrossRef] [PubMed]
- Lindenbergh, R.; Uchanski, L.; Bucksch, A.; Van Gosliga, R. Structural monitoring of tunnels using terrestrial laser scanning. Rep. Geod. 2009, 2, 231–239. [Google Scholar]
- Lovas, T.; Barsi, A.; Detrekoi, A.; Dunai, L.; Csak, Z.; Polgar, A.; Berenyi, A.; Kibedy, Z.; Szocs, K. Terrestrial laser scanning in deformation measurements of structures. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 527–532. [Google Scholar]
- Gordon, S.J.; Lichti, D.D.; Stewart, M.; Franke, J. Structural deformation measurements using terrestrial laser scanners. In Proceedings of the 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 25–28 May 2003. [Google Scholar]
- Monserrat, O.; Crosetto, M. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm. Remote Sens. 2008, 63, 142–154. [Google Scholar] [CrossRef]
- Zhao, X.; Kargoll, B.; Omidalizarandi, M.; Xu, X.; Alkhatib, H. Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis. Remote Sens. 2018, 10, 634. [Google Scholar] [CrossRef]
- Paffenholz, J.A.; Lu, C. 3D point cloud based spatio-temporal monitoring of artificial and natural objects. In Proceedings of the FIG Working Week Smart, Surveyors for Land and Water Management, Amsterdam, The Netherlands, 10–14 May 2020. [Google Scholar]
- Han, J.; Guo, J.; Jiang, Y. Monitoring tunnel profile by means of multi-epoch dispersed 3-D LIDAR point clouds. Tunn. Undergr. Space Technol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Yi, C.; Lu, D.; Xie, Q.; Xu, J.; Wang, J. Tunnel Deformation Inspection via Global Spatial Axis Extraction from 3D Raw Point Cloud. Sensors 2020, 20, 6815. [Google Scholar] [CrossRef]
- Wróblewski, A.; Wodecki, J.; Trybała, P.; Zimroz, R. A Method for Large Underground Structures Geometry Evaluation Based on Multivariate Parameterization and Multidimensional Analysis of Point Cloud Data. Energies 2022, 15, 6302. [Google Scholar] [CrossRef]
- Mosalam, K.M.; Shakhzod, M.; Park, S.T. Applications of laser scanning to structures in laboratory tests and field surveys. Struct. Control Health Monit. 2014, 21, 115–134. [Google Scholar] [CrossRef]
- Xie, X.; Lu, X. Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning. Undergr. Space 2017, 2, 16–29. [Google Scholar] [CrossRef]
- Owerko, T.; Kuras, P.; Ortyl, Ł.; Kocierz, R. Wykorzystanie skaningu laserowego do wyznaczania deformacji stalowych wież telekomunikacyjnych [The use of laser scanning to determine the deformation of steel telecommunications towers]. Pomiary Autom. Kontrola 2012, 58, 1087–1090. [Google Scholar]
- Teza, G.; Pesci, A. Geometric characterization of a cylinder-shaped structure from laser scanner data: Development of an analysis tool and its use on a leaning bell tower. J. Cult. Herit. 2013, 14, 411–423. [Google Scholar] [CrossRef]
- Janus, J.; Ostrogórski, P. Underground Mine Tunnel Modelling Using Laser Scan Data in Relation to Manual Geometry Measurements. Energies 2022, 15, 2537. [Google Scholar] [CrossRef]
- Lu, Z.; Gong, H.; Jin, Q.; Hu, Q.; Wang, S. A Transmission Tower Tilt State Assessment Approach Based on Dense Point Cloud from UAV-Based LiDAR. Remote Sens. 2022, 14, 408. [Google Scholar] [CrossRef]
- Schneider, D. Terrestrial laser scanning for area based deformation analysis of towers and water dams. In Proceedings of the 3rd IAG/12th FIG Symposium, Baden, Austria, 22–24 May 2006. [Google Scholar]
- Głowacki, T. Monitoring the Geometry of Tall Objects in Energy Industry. Energies 2022, 15, 2324. [Google Scholar] [CrossRef]
- Gawałkiewicz, R. Przykład skanowania laserowego w monitoringu obiektów powłokowych [An example of laser scanning in monitoring shell objects]. Geomat. Environ. Eng. 2007, 1, 93–110. [Google Scholar]
- Beshr, A.A.A.; Basha, A.M.; El-Madany, S.A.; El-Azeem, F.A. Deformation of High Rise Cooling Tower through Projection of Coordinates Resulted from Terrestrial Laser Scanner Observations onto a Vertical Plane. ISPRS Int. J. Geo Inf. 2023, 12, 417. [Google Scholar] [CrossRef]
- Kocierz, R.; Ortyl, Ł.; Kuras, P.; Owerko, T.; Kędzierski, M. Geodezyjne metody pomiarowe w diagnostyce obiektów budownictwa energetycznego [Geodetic measurement methods in the diagnostics of energy construction facilities]. Mater. Bud. 2016, 5, 95–96. [Google Scholar] [CrossRef]
- Noakowski, P. Ocena wytężenia chłodni kominowej wskutek nierównomiernych osiadań jej fundamentów [Assessment of the cooling tower stress due to uneven settlement of its foundations]. Przegląd Bud. 2010, 5, 40–44. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least sequares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef]
- Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on points cloud data acquired with a ground laser scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, W19. [Google Scholar]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N–Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Lindenbergh, R.; Pfeifer, N. A statistical deformation analysis of two epochs of terrestrial laser data of a lock. In Proceedings of the Optical 3D Measurement Techniques VII/2, Vienna, Austria, 3–5 October 2005; pp. 61–70. [Google Scholar]
- Antova, G. Terrestrial Laser Scanning for Dam Deformation Monitoring—Case Study. In Proceedings of the FIG Working Week from the Wisdom of the Ages to the Challenges of the Modern World, Sofia, Bulgaria, 17–21 May 2015; pp. 25–29. [Google Scholar]
- Kromer, R.A.; Abellán, A.; Hutchinson, D.J.; Lato, M.; Edwards, T.; Jaboyedoff, M. A 4D Filtering and Calibration Technique for Small-Scale Point Cloud Change Detection with a Terrestrial Laser Scanner. Remote Sens. 2015, 7, 13029–13052. [Google Scholar] [CrossRef]
- Law, D.W.; Silcock, D.; Holden, L. Terrestrial laser scanner assessment of deteriorating concrete structures. Struct. Control Health Monit. 2018, 25, 2156. [Google Scholar] [CrossRef]
- Yang, Y.; Schwieger, V. Patch-based M3C2: Towards lower-uncertainty and higher-resolution deformation analysis of 3D point clouds. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103535. [Google Scholar] [CrossRef]
- Walton, G.; Delaloye, D.; Diederichs, M.S. Development of an elliptical fitting algorithm to improve change detection capabilities with applications for deformation monitoring in circular tunnels and shafts. Tunn. Undergr. Space Technol. 2014, 43, 336–349. [Google Scholar] [CrossRef]
- Lindenbergh, R.; Pietrzyk, P. Change detection and deformation analysis using static and mobile laser scanning. Appl. Geomat. 2015, 65, 65–74. [Google Scholar] [CrossRef]
- Van Gosliga, R.; Lindenbergh, R.; Pfeifer, N. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 167–172. [Google Scholar]
- Tsakiri, M.; Lichti, D.; Pfeifer, N. Terrestrial laser scanning for deformation monitoring. In Proceedings of the 3rd IAG/12th FIG Symposium, Baden, Austria, 22–24 May 2006. [Google Scholar]
- Barnhart, T.B.; Crosby, B.T. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska. Remote Sens. 2013, 5, 2813–2837. [Google Scholar] [CrossRef]
- Zogg, H.M.; Ingensand, H. Terrestrial laser scanning for deformation monitoring—Load tests on the Felsenau viaduct. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 555–562. [Google Scholar]
- Zahs, V.; Hämmerle, M.; Anders, K.; Hecht, S.; Sailer, R.; Rutzinger, M.; Williams, J.G.; Höfle, B. Multi-temporal 3D point cloud-based quantification and analysis of geomorphological activity at an alpine rock glacier using airborne and terrestrial LiDAR. Permafr. Periglac. Process. 2019, 30, 222–238. [Google Scholar] [CrossRef]
- DiFrancesco, P.M.; Bonneau, D.; Hutchinson, D.J. The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sens. 2020, 12, 1885. [Google Scholar] [CrossRef]
- Winiwarter, L.; Anders, K.; Höfle, B. M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation. ISPRS J. Photogram. Remote Sens. 2021, 178, 240–258. [Google Scholar] [CrossRef]
- Holst, C.; Klingbeil, L.; Esser, F.; Kuhlmann, H. Using point cloud comparisons for revealing deformations of natural and artificial objects. In Proceedings of the INGEO 2017, 7th International Conference on Engineering Surveying, Lisbon, Portugal, 18–20 October 2017. [Google Scholar]
- Paffenholz, J.A.; Huge, J.; Stenz, U. Integration of Laser Tracking and Laser Scanning for Optimal Detection of Load Induced Arch Displacement. Allg. Vermess. Nachrichten 2018, 125, 73–88. [Google Scholar]
- Abdelazeem, M.; Elamin, A.; Afifi, A.; El-Rabbany, A. Multi-sensor point cloud data fusion for precise 3D mapping. Egypt. J. Remote Sens. Space Sci. 2021, 24, 835–844. [Google Scholar] [CrossRef]
- Pu, X.; Gan, S.; Yuan, X.; Li, R. Feature Analysis of Scanning Point Cloud of Structure and Research on Hole Repair Technology Considering Space-Ground Multi-Source 3D Data Acquisition. Sensors 2022, 22, 9627. [Google Scholar] [CrossRef]
- Morgan, J.; Ferrell, J.; Schultz, C. Jasiak. Photogrammetric Point-Cloud Replicability When Documenting Forensic Archaeological Scenes under Variable Lighting Conditions. Tech. Notes 2023, 6, 222–230. [Google Scholar] [CrossRef]
- Zahs, V.; Winiwarter, L.; Anders, K.; Williams, J.G.; Rutzinger, M.; Höfle, B. Correspondence-driven plane-based M3C2 for lower uncertainty in 3D topographic change quantification. ISPRS J. Photogram. Remote Sens. 2022, 183, 541–559. [Google Scholar] [CrossRef]
- González-Aguilera, D.; Gómez-Lahoz, J.; Sánchez, J. A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner. Sensors 2008, 8, 5866–5883. [Google Scholar] [CrossRef]
- Takhirov, S.; Rakhmonov, B. Structural Health Monitoring of the Juma Mosque in Itchan Kala in Khiva (Uzbekistan): Laser Scanning Combined with Numerical Modelling. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions SAHC, Barcelona, Spain, 16–18 September 2020. [Google Scholar] [CrossRef]
- Harmening, C.; Hobmaier, C.; Neuner, H. Laser Scanner–Based Deformation Analysis Using Approximating B-Spline Surfaces. Remote Sens. 2021, 13, 3551. [Google Scholar] [CrossRef]
- Guidi, G.; Malik, U.S.; Manes, A.; Cardamone, S.; Fossati, M.; Lazzari, C.; Volpato, C.; Giglio, M. Laser Scanner-Based 3D Digitization for the Reflective Shape Measurement of a Parabolic Trough Collector. Energies 2020, 13, 5607. [Google Scholar] [CrossRef]
- Glowacki, T.; Grzempowski, P.; Sudol, E.; Wajs, J.; Zajac, M. The assessment of the application of terrestrial Laser scanning for measuring the geometrics of cooling tower. Geomat. Landmanag. Landsc. 2016, 4, 49–57. [Google Scholar] [CrossRef]
- Kwinta, A.; Bac-Bronowicz, J. 2021. Analysis of hyperboloid cooling tower projection on 2D shape. Geomat. Landmanag. Landsc. 2021, 3, 25–40. [Google Scholar] [CrossRef]
- Mohamed, A.; Wilkinson, B. Direct Georeferencing of Stationary LiDAR. Remote Sens. 2009, 1, 1321–1337. [Google Scholar] [CrossRef]
- Paffenholz, J.A.; Kutterer, H. Direct georeferencing of static terrestrial laser scans. In Proceedings of the FIG Working Week, Stockholm, Sweden, 14–19 June 2008. [Google Scholar]
- Becerik-Gerber, B.; Farrokh, J.; Geoffrey, K.; Gulben, C. Assessment of target types and layouts in 3D laser scanning for registration accuracy. Autom. Constr. 2011, 20, 649–658. [Google Scholar] [CrossRef]
- Du, S.Y.; Zheng, N.N.; Xiong, L.; Ying, S.H.; Xue, J.R. Scaling iterative closest point algorithm for registration of m–D point sets. J. Vis. Commun. Image Represent. 2010, 21, 442–452. [Google Scholar] [CrossRef]
- Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 76, 76–88. [Google Scholar] [CrossRef]
- Zwillinger, D. CRC Standard Mathematical Tables and Formulae, 31st ed.; Zwillinger, D., Ed.; CRC Press: New York, NY, USA, 2002. [Google Scholar]
Series I | Series II | Series III | ||||||
---|---|---|---|---|---|---|---|---|
[m] | [m] | [m] | [m] | [m] | [m] | [m] | [m] | [m] |
12.7329 | 37.8376 | 51.5462 | 12.7331 | 37.8364 | 51.5459 | 12.7324 | 37.8373 | 51.5470 |
= 0.1252 m | = 0.1239 m | = 0.1247 m |
Identified Parameters | Series I | Series II | Series III | Mean | Method |
---|---|---|---|---|---|
Radius at the level of the bottom ring | 21.5177 m | 21.5184 m | 21.5172 m | 21.5178 m | 21.52 m |
Throat radius | 12.7329 m | 12.7331 m | 12.7324 m | 12.7328 m | 12.75 m |
Radius at the level of the top ring | 13.4914 m | 13.4917 m | 13.4908 m | 13.4913 m | 13.52 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuch, M.; Gawronek, P.; Mitka, B. Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping. Sensors 2024, 24, 6045. https://doi.org/10.3390/s24186045
Makuch M, Gawronek P, Mitka B. Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping. Sensors. 2024; 24(18):6045. https://doi.org/10.3390/s24186045
Chicago/Turabian StyleMakuch, Maria, Pelagia Gawronek, and Bartosz Mitka. 2024. "Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping" Sensors 24, no. 18: 6045. https://doi.org/10.3390/s24186045
APA StyleMakuch, M., Gawronek, P., & Mitka, B. (2024). Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping. Sensors, 24(18), 6045. https://doi.org/10.3390/s24186045