Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Experimental Field Design
2.3. Data Acquisition
2.4. Methods of Data Processing
2.4.1. Data Preprocessing
2.4.2. Fractional Order Differentiation
2.4.3. Successive Projections Algorithm
2.5. Methods of Modelling
3. Results
3.1. Effect of Different Concentrations of CO2 on SPAD in Wheat
3.2. Effects of Different Concentrations of CO2 on the Raw Hyperspectral Features of Wheat
3.3. SPAD-Sensitive Wavelength Selection Analysis
3.4. Modelling of SPAD Estimation in Wheat under CO2 Stress
4. Discussion
5. Conclusions
- (1)
- Successful pre-processing of hyperspectral data using fractional order differentiation significantly improved the ability of the MLR model to estimate the SPAD values of wheat under different CO2 leakage rates (1 L/min, 3 L/min, 5 L/min, 0 L/min). The best models were based on 1.1, 1.8, 0.4 and 1.7 orders of differentiation, which improved the R² values over the original spectral model on the validation set by 11.528%, 14.2%, 17.048%, and 37.3%, respectively, indicating that appropriate spectral transformations can effectively improve the model’s performance.
- (2)
- The SPA method was used to accurately screen the feature wavelengths that were highly sensitive to wheat SPAD from the huge amount of spectral information, and these feature wavelengths played a key role in MLR modelling, further demonstrating the importance of feature selection for improving model efficiency and accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Wu, S.; Lei, Y.; Li, S.; Li, L. Exploring Spatial Characteristics of City-Level CO2 Emissions in China and Their Influencing Factors from Global and Local Perspectives. Sci. Total Environ. 2021, 754, 142206. [Google Scholar] [CrossRef]
- Luo, F.; Guo, Y.; Yao, M.; Cai, W.; Wang, M.; Wei, W. Carbon Emissions and Driving Forces of China’s Power Sector: Input-Output Model Based on the Disaggregated Power Sector. J. Clean. Prod. 2020, 268, 121925. [Google Scholar] [CrossRef]
- Duan, C.; Zhu, W.; Wang, S.; Chen, B. Drivers of Global Carbon Emissions 1990–2014. J. Clean. Prod. 2022, 371, 133371. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Pearce, J.; Jones, D.; Blackford, J.; Beaubien, S.; Foekema, E.; Gemeni, V.; Kirk, K.; Lions, J.; Metcalfe, R.; Moni, C.; et al. A Guide for Assessing the Potential Impacts on Ecosystems of Leakage from CO2 Storage Sites. Energy Procedia 2014, 63, 3242–3252. [Google Scholar] [CrossRef]
- Zhou, X.; Apple, M.E.; Dobeck, L.M.; Cunningham, A.B.; Spangler, L.H. Observed Response of Soil CO2 Concentration to Leaked CO2 from an Engineered CO2 Leakage Experiment. Int. J. Greenh. Gas Control 2013, 16, 116–128. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Shi, B.; Fan, K.; Li, Z.; Chang, Q. Estimation of Winter Wheat Canopy Chlorophyll Content Based on Canopy Spectral Transformation and Machine Learning Method. Agronomy 2023, 13, 783. [Google Scholar] [CrossRef]
- Wang, T.; Gao, M.; Cao, C.; You, J.; Zhang, X.; Shen, L. Winter Wheat Chlorophyll Content Retrieval Based on Machine Learning Using in Situ Hyperspectral Data. Comput. Electron. Agric. 2022, 193, 106728. [Google Scholar] [CrossRef]
- Cai, Y.; Miao, Y.; Wu, H.; Wang, D. Hyperspectral Estimation Models of Winter Wheat Chlorophyll Content Under Elevated CO2. Front. Plant Sci. 2021, 12, 642917. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, L.; Wu, L.; Yuan, D. Estimation of Chlorophyll Content in Wheat Based on Optimal Spectral Index. Appl. Sci. 2024, 14, 703. [Google Scholar] [CrossRef]
- Chen, Z.; Hao, P.; Liu, J.; An, M.; Han, B. Technical demands for agricultural remote sensing satellites in China. Smart Agric. 2019, 1, 32. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, T.; Chen, S. Agricultural artificial intelligence technology: Wings of modern agricultural science and technology. J. South China Agric. Univ. 2020, 41, 1–13. [Google Scholar] [CrossRef]
- Xu, D.; Liu, X.; Wang, W.; Chen, M.; Kan, H. Hyper-spectral characteristics and estimation model of leaf chlorophyll content in cotton under waterlogging stress. Chin. J. Appl. Ecol. 2017, 28, 3289–3296. [Google Scholar] [CrossRef]
- Xia, T.; Yang, K.; Feng, F.; Guo, H.; Zhang, C. A New Copper Stress Vegetation Index NCSVI Explores the Sensitive range of Corn Leaves Spectral under Copper Pollution. Spectrosc. Spectr. Anal. 2021, 41, 2604–2610. [Google Scholar] [CrossRef]
- Goswami, J.; Das, R.; Sarma, K.K.; Raju, P. Red Edge Position (REP), an Indicator for Crop Stress Detection: Implication on Rice (Oryza sativa L). Int. J. Environ. Clim. Change 2021, 11, 88–96. [Google Scholar] [CrossRef]
- Noomen, M.F.; Skidmore, A.K. The Effects of High Soil CO2 Concentrations on Leaf Reflectance of Maize Plants. Int. J. Remote Sens. 2009, 30, 481–497. [Google Scholar] [CrossRef]
- Lakkaraju, V.R.; Zhou, X.; Apple, M.E.; Cunningham, A.; Dobeck, L.M.; Gullickson, K.; Spangler, L.H. Studying the Vegetation Response to Simulated Leakage of Sequestered CO2 Using Spectral Vegetation Indices. Ecol. Inform. 2010, 5, 379–389. [Google Scholar] [CrossRef]
- Tuerxun, N.; Zheng, J.; Wang, R.; Wang, L.; Liu, L. Hyperspectral Estimation of Chlorophyll Content in Jujube Leaves: Integration of Derivative Processing Techniques and Dimensionality Reduction Algorithms. Front. Plant Sci. 2023, 14, 1260772. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral Estimation of Chlorophyll Content in Apple Tree Leaf Based on Feature Band Selection and the CatBoost Model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Li, P.; Huang, X.; Yin, S.; Bao, Y.; Bao, G.; Tong, S.; Dashzeveg, G.; Nanzad, T.; Dorjsuren, A.; Enkhnasan, D.; et al. Optimizing Spectral Index to Estimate the Relative Chlorophyll Content of the Forest under the Damage of Erannis Jacobsoni Djak in Mongolia. Ecol. Indic. 2023, 154, 110714. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A Novel Spectral Index for Estimation of Relative Chlorophyll Content of Sugar Beet. Comput. Electron. Agric. 2021, 184, 106088. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, C.; Ding, F.; Li, Y.; Chen, W.; Li, J.; Xiao, Z. Hyperspectral Estimation of Winter Wheat Leaf Area Index Based on Continuous Wavelet Transform and Fractional Order Differentiation. Sensors 2021, 21, 8497. [Google Scholar] [CrossRef]
- Zhao, Q.; Ge, X.; Ding, J.; Wang, J.; Zhang, Z.; Tian, M. Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content. Ji Guang Yu Guang Dian Zi Xue Jin Zhan 2020, 57, 153001. [Google Scholar] [CrossRef]
- Li, C.; Ma, C.; Chen, P.; Cui, Y.; Shi, J.; Wang, Y. Machine Learning-Based Estimation of Potato Chlorophyll Content at Different Growth Stage Using UAV Hyperspectral Data. Zemdirb.-Agric. 2021, 108, 181–190. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Sun, Q.; Yang, F.; Yang, G. Estimation of Potato Above-ground Biomass Based on Fractional Differential of UAV Hyperspectral. Trans. Chin. Soc. Agric. Mach. 2020, 51, 202–211. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Wang, M.; Zhao, Y.; Li, J. SPA-Based Methods for the Quantitative Estimation of the Soil Salt Content in Saline-Alkali Land from Field Spectroscopy Data: A Case Study from the Yellow River Irrigation Regions. Remote Sens. 2019, 11, 967. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Amin, M.S.M.; Anuar, A.R.; Gholizadeh, A.; Wayayok, A.; Khairunniza-Bejo, S. Assessment of Rice Leaf Chlorophyll Content Using Visible Bands at Different Growth Stages at Both the Leaf and Canopy Scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 35–45. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, J.; Li, K.; Xiong, K.; Du, Y.; Wang, X. Identificating Vegetation Stress under Natural Gas Micro-Leakage Based on Leaf Scale Temporal Hyperspectrum. Int. J. Remote Sens. 2023, 44, 6825–6844. [Google Scholar] [CrossRef]
- Wu, R.; Fan, Y.; Zhang, L.; Yuan, D.; Gao, G. Wheat Yield Estimation Study Using Hyperspectral Vegetation Indices. Appl. Sci. 2024, 14, 4245. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, X.; Song, X.; Zhang, T.; Duan, W.; Su, J. Hyperspectral Estimation of Wheat Stripe Rust Using Fractional Order Differential Equations and Gaussian Process Methods. Comput. Electron. Agric. 2023, 206, 107671. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Lu, H.; Yang, Y.; Xie, J.; Chen, D. Application of Fractional-Order Differential and Ensemble Learning to Predict Soil Organic Matter from Hyperspectra. J. Soils Sediments 2024, 24, 361–372. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Yu, L.; Liu, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Cheng, H. Combining Fractional Order Derivative and Spectral Variable Selection for Organic Matter Estimation of Homogeneous Soil Samples by VIS–NIR Spectroscopy. Remote Sens. 2018, 10, 479. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Q.; Cao, L.; Zhou, G.; Zhang, G.; Zhan, J. A Multiband Model with Successive Projections Algorithm for Bathymetry Estimation Based on Remotely Sensed Hyperspectral Data in Qinghai Lake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6871–6881. [Google Scholar] [CrossRef]
- Zelterman, D. Multivariable Linear Regression. In Applied Multivariate Statistics with R; Zelterman, D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 235–265. [Google Scholar] [CrossRef]
- Ko, D.; Yoo, G.; Yun, S.-T.; Chung, H. Impacts of CO2 Leakage on Plants and Microorganisms: A Review of Results from CO2 Release Experiments and Storage Sites. Greenh. Gases Sci. Technol. 2016, 6, 319–338. [Google Scholar] [CrossRef]
- Dou, S.; Zhang, W.; Deng, Y.; Zhang, C.; Mei, Z.; Yan, J.; Li, M. Comparison of Citrus Leaf Water Content Estimations Based on the Continuous Wavelet Transform and Fractional Derivative Methods. Horticulturae 2024, 10, 177. [Google Scholar] [CrossRef]
- Xiao, B.; Li, S.; Dou, S.; He, H.; Fu, B.; Zhang, T.; Sun, W.; Yang, Y.; Xiong, Y.; Shi, J.; et al. Comparison of Leaf Chlorophyll Content Retrieval Performance of Citrus Using FOD and CWT Methods with Field-Based Full-Spectrum Hyperspectral Reflectance Data. Comput. Electron. Agric. 2024, 217, 108559. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Chen, Y.; Wang, J.; Wu, G. Estimation of Arsenic in Agricultural Soils Using Hyperspectral Vegetation Indices of Rice. J. Hazard. Mater. 2016, 308, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Jing, L.; Wang, Y.; Zhu, J.; Yang, L.; Wang, Y. Effects of Elevated Atmospheric CO2 and Temperature on Dynamics of Leaf Chlorophyll Contents and SPAD Value of Rice in Open-Air Field Conditions. Chin. J. Rice Sci. 2017, 31, 524–532. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Y.; Song, S.; Shen, Y.; Li, S. Effect of Doubled Atmospheric CO2 and Nitrogen Application on Photosynthetic Rate and Chlorophyll Fluorescence Character of Winter Wheat. Acta Bot. Boreali-Occident. Sin. 2011, 31, 144–151. [Google Scholar]
- Stenhouse, M.; Arthur, R.; Zhou, W. Assessing Environmental Impacts from Geological CO2 Storage. Energy Procedia 2009, 1, 1895–1902. [Google Scholar] [CrossRef]
- Paulley, A.; Metcalfe, R.; Egan, M.; Maul, P.R.; Limer, L.; Grimstad, A.-A. Hypothetical Impact Scenarios for CO2 Leakage from Storage Sites. Energy Procedia 2013, 37, 3495–3502. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Li, Y.E.; Wan, Y.F. The Impacts of Introduced CO2 Flux on Maize/Alfalfa and Soil. Int. J. Greenh. Gas Control 2014, 23, 86–97. [Google Scholar] [CrossRef]
- Patil, R.H.; Colls, J.J.; Steven, M.D. Effects of CO2 Gas as Leaks from Geological Storage Sites on Agro-Ecosystems. Energy 2010, 35, 4587–4591. [Google Scholar] [CrossRef]
- Virtanen, O.; Constantinidou, E.; Tyystjärvi, E. Chlorophyll Does Not Reflect Green Light—How to Correct a Misconception. J. Biol. Educ. 2020, 56, 52–559. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, S.; Chung, L.C.H.; Chan, T.O. Evaluating Land-Surface Warming and Cooling Environments across Urban–Rural Local Climate Zone Gradients in Subtropical Megacities. Build. Environ. 2024, 251, 111232. [Google Scholar] [CrossRef]
- Keith, C.J.; Repasky, K.S.; Lawrence, R.L.; Jay, S.C.; Carlsten, J.L. Monitoring Effects of a Controlled Subsurface Carbon Dioxide Release on Vegetation Using a Hyperspectral Imager. Int. J. Greenh. Gas Control 2009, 3, 626–632. [Google Scholar] [CrossRef]
- Chen, Y.H.; Jiang, J.B.; A-Du, G.; Li, Y.F. Research on the Spectral Feature and Identification of the Surface Vegetation Stressed by Stored CO2 Underground Leakage. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2012, 32, 1882–1885. [Google Scholar] [CrossRef]
Indicators | Stress Group 1 L | Stress Group 3 L | Stress Group 5 L | Control Group |
---|---|---|---|---|
min | 10.2 | 5.5 | 7.0 | 51.1 |
max | 62.0 | 60.1 | 60.2 | 65.5 |
mean | 42.9 | 36.6 | 35.3 | 59.5 |
SD | 15.6 | 17.7 | 18.3 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yuan, D.; Fan, Y.; Yang, R. Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress. Sensors 2024, 24, 4776. https://doi.org/10.3390/s24154776
Zhang L, Yuan D, Fan Y, Yang R. Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress. Sensors. 2024; 24(15):4776. https://doi.org/10.3390/s24154776
Chicago/Turabian StyleZhang, Liuya, Debao Yuan, Yuqing Fan, and Renxu Yang. 2024. "Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress" Sensors 24, no. 15: 4776. https://doi.org/10.3390/s24154776
APA StyleZhang, L., Yuan, D., Fan, Y., & Yang, R. (2024). Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress. Sensors, 24(15), 4776. https://doi.org/10.3390/s24154776