A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning
Abstract
:1. Introduction
- A platform for large-scale change detection of remote sensing images is developed with the integration of crowdsourcing, human-in-the-loop, and active learning techniques;
- A quality control model for crowdsourcing is proposed, combined with the annotator ability assessment model;
- An active learning approach is proposed utilizing annotated data from crowdsourcing in remote sensing images change detection.
2. Related Works
2.1. Deep Learning-Based Change Detection Models
2.2. Crowdsourced Annotations
2.3. Human-in-the-Loop
2.4. Action Learning
3. Methods
3.1. Methods Overview
3.2. Human-in-the-Loop
3.3. Crowdsourcing
3.3.1. Annotator Qualification Assessment Model
3.3.2. Annotation Quality Control Model
MV Algorithm
EM Algorithm
Algorithm 1 EM algorithm |
input: Given annotators’ label and error vector and priors for each pixel output: The probability that the annotator marks the pixel correctly priors = sum(segmentations)/len(segmentations) errors = self._m_step(segmentations,np.round(priors), segmentation_region_size, segmentations_sizes) Begin for _ in range(self.n_iter): priors = self._e_step(segmentations, errors, priors) errors = self._m_step(segmentations, priors, segmentation_region_size, segmentations_sizes) return priors > 0.5 End Return priors, errors |
3.4. Active Learning in Change Detection
3.4.1. LC Sampling
3.4.2. Entropy Sampling
3.4.3. Committee Voting Sampling
3.5. Design of the Crowdsourcing Change Detection Platform
4. Data and Experiment
4.1. Experimental Dataset
4.2. Experiment Environments
4.3. Evaluation Metrics
4.4. Experiment Details
4.4.1. Sample Selections Using Active Learning
LC Sampling Experimental Steps
Entropy Sampling Experimental Steps
Committee Voting Sampling
4.4.2. Crowdsourcing Annotator Ability Assessment Experiment and Annotation Quality Assessment Experiments
5. Results
5.1. Crowdsourcing Annotator Ability Assessment Experiment Results
5.2. Experiment Results of Annotation Quality Assessment
5.3. Experiment Results of Active Learning Sample Selection
5.4. Online Platform
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Alqurashi, A.; Kumar, L. Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: A review. Adv. Remote Sens. 2013, 2, 193–204. [Google Scholar] [CrossRef]
- Hecheltjen, A.; Thonfeld, F.; Menz, G. Recent advances in remote sensing change detection—A review. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Springer: Dordrecht, The Netherlands, 2014; pp. 145–178. [Google Scholar]
- Jiang, J.; Tian, G. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ. Sci. 2010, 2, 571–575. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Han, L.; Zhu, L. How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery? Remote Sens. 2020, 12, 417. [Google Scholar] [CrossRef]
- Pangali Sharma, T.P.; Zhang, J.; Koju, U.A.; Zhang, S.; Bai, Y.; Suwal, M.K. Review of flood disaster studies in Nepal: A remote sensing perspective. Int. J. Disaster Risk Reduct. 2019, 34, 18–27. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Shi, K.; Bai, L.; Wang, Z.; Tong, X.; Mulvenna, M.D.; Bond, R.R. Photovoltaic Installations Change Detection from Remote Sensing Images Using Deep Learning. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York City, NY, USA, 2022; pp. 3231–3234. [Google Scholar]
- Wang, Z.; Bai, L.; Song, G.; Zhang, J.; Tao, J.; Mulvenna, M.D.; Bond, R.R.; Chen, L. An oil well dataset derived from satellite-based remote sensing. Remote Sens. 2021, 13, 1132. [Google Scholar] [CrossRef]
- Song, G.; Wang, Z.; Bai, L.; Zhang, J.; Chen, L. Detection of oil wells based on faster R-CNN in optical satellite remote sensing images. In Proceedings of the Image Signal Processing for Remote Sensing XXVI, Online Only, 21–25 September 2020. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban change detection for multispectral earth observation using convolutional neural networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York City, NY, USA, 2018; pp. 2115–2118. [Google Scholar]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
- Li, H.; Dou, X.; Tao, C.; Wu, Z.; Chen, J.; Peng, J.; Deng, M.; Zhao, L. RSI-CB: A large-scale remote sensing image classification benchmark using crowdsourced data. Sensors 2020, 20, 1594. [Google Scholar] [CrossRef] [PubMed]
- Agnisarman, S.; Lopes, S.; Madathil, K.C.; Piratla, K.; Gramopadhye, A. A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 2019, 97, 52–76. [Google Scholar] [CrossRef]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, X.; Tapper, N. Using convolutional neural networks incorporating hierarchical active learning for target-searching in large-scale remote sensing images. Int. J. Remote Sens. 2020, 41, 4057–4079. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Xu, C.; Ye, Z.; Mei, L.; Shen, S.; Sun, S.; Wang, Y.; Yang, W. Cross-Attention Guided Group Aggregation Network for Cropland Change Detection. IEEE Sens. J. 2023, 23, 13680–13691. [Google Scholar] [CrossRef]
- Eismann, M.T.; Meola, J.; Hardie, R.C. Hyperspectral Change Detection in the Presenceof Diurnal and Seasonal Variations. IEEE Trans. Geosci. Remote. Sens. 2007, 46, 237–249. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Bai, L.; Song, G.; Tao, J.; Chen, L. Deforestation Detection Based on U-Net and LSTM in Optical Satellite Remote Sensing Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3753–3756. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Radke, R.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Murat, İ.; Ünsalan, C. Two-Dimensional Change Detection Methods: Remote Sensing Applications; Springer Science & Business Media: Cham, Switzerland, 2012. [Google Scholar]
- Kwan, C. Methods and challenges using multispectral and hyperspectral images for practical change detection applications. Information 2019, 10, 353. [Google Scholar] [CrossRef]
- Ke, L.; Lin, Y.; Zeng, Z.; Zhang, L.; Meng, L. Adaptive Change Detection with Significance Test. IEEE Access 2018, 6, 27442–27450. [Google Scholar] [CrossRef]
- Vignesh, T.; Thyagharajan, K.; Murugan, D.; Sakthivel, M.; Pushparaj, S. A novel multiple unsupervised algorithm for land use/land cover classification. Indian J. Sci. Technol. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Aslami, F.; Ghorbani, A. Object-based land-use/land-cover change detection using Landsat imagery: A case study of Ardabil, Namin, and Nir counties in northwest Iran. Environ. Monit. Assess. 2018, 190, 376. [Google Scholar] [CrossRef] [PubMed]
- Kusetogullari, H.; Yavariabdi, A.; Celik, T. Unsupervised Change Detection in Multitemporal Multispectral Satellite Images Using Parallel Particle Swarm Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 2151–2164. [Google Scholar] [CrossRef]
- Cao, G. Unsupervised change detection in high spatial resolution remote sensing images based on a conditional random field model. Eur. J. Remote. Sens. 2016, 49, 225–237. [Google Scholar] [CrossRef]
- Ajadi, O.A.; Meyer, F.J.; Webley, P.W. Change Detection in Synthetic Aperture Radar Images Using a Multiscale-Driven Approach. Remote. Sens. 2016, 8, 482. [Google Scholar] [CrossRef]
- Yavariabdi, A.; Kusetogullari, H. Change Detection in Multispectral Landsat Images Using Multiobjective Evolutionary Algorithm. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 414–418. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Change detection in image time-series using unsupervised lstm. IEEE Geosci. Remote Sens. Lett. 2020, 19, 8005205. [Google Scholar] [CrossRef]
- Sefrin, O.; Riese, F.M.; Keller, S. Deep learning for land cover change detection. Remote Sens. 2020, 13, 78. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Lecture Notes in Computer Science; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, H.; Gao, L.; Benediktsson, J.A.; Zhao, M.; Shi, C. Simple multiscale unet for change detection with heterogeneous remote sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504905. [Google Scholar] [CrossRef]
- Moustafa, M.S.; Mohamed, S.A.; Ahmed, S.; Nasr, A.H. Hyperspectral change detection based on modification of UNet neural networks. J. Appl. Remote Sens. 2021, 15, 028505. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Proceedings 4; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Zhang, X.; Yue, Y.; Gao, W.; Yun, S.; Su, Q.; Yin, H.; Zhang, Y. DifUnet++: A Satellite Images Change Detection Network Based on Unet++ and Differential Pyramid. IEEE Geosci. Remote Sens. Lett 2022, 19, 8006605. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 182–186. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett 2021, 18, 811–815. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar] [CrossRef]
- Furukawa, Y.; Suzuki, K.; Hamaguchi, R.; Onishi, M.; Sakurada, K. Self-supervised Simultaneous Alignment and Change Detection, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020—24 January 2021; IEEE: New York City, NY, USA, 2020; pp. 6025–6031. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
- He, H.; Chen, Y.; Li, M.; Chen, Q. ForkNet: Strong Semantic Feature Representation and Subregion Supervision for Accurate Remote Sensing Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2142–2153. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Chen, D.; Ye, B.; Zhao, Z.; Wang, F.; Xu, W.; Yin, W. Change Detection Converter: Using Semantic Segmantation Models to Tackle Change Detection Task. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; IEEE: New York City, NY, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Song, J.; Gao, S.; Zhu, Y.; Ma, C. A survey of remote sensing image classification based on CNNs. Big Earth Data 2019, 3, 232–254. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, W. A satellite data portal developed for crowdsourcing data analysis and interpretation. In Proceedings of the 2012 IEEE 8th International Conference on E-Science (e-Science), Chicago, IL, USA, 8–12 October 2012; IEEE: New York City, NY, USA, 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Irshad, H.; Montaser-Kouhsari, L.; Waltz, G.; Bucur, O.; Nowak, J.A.; Dong, F.; Knoblauch, N.W.; Beck, A.H. Crowdsourcing Image Annotation for Nucleus Detection and Segmentation in Computational Pathology: Evaluating Experts, Automated Methods, and the Crowd. In Proceedings of the Pacific Symposium on Biocomputing 2015, World Scientific, Kohala Coast, HI, USA, 4–8 January 2015; pp. 294–305. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Foody, G.; See, L.; Fritz, S.; Mooney, P.; Olteanu-Raimond, A.-M.; Fonte, C.C. (Eds.) A Review of OpenStreetMap Data. In Mapping and the Citizen Sensor; Ubiquity Press: London, UK, 2017; pp. 37–59. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Zhou, Y. A Crowdsourcing-Based Platform for Labelling Remote Sensing Images. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3227–3230. [Google Scholar] [CrossRef]
- Franklin, M.J.; Kossmann, D.; Kraska, T.; Ramesh, S.; Xin, R. CrowdDB: Answering queries with crowdsourcing. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, Athens, Greece, 12–16 June 2011; ACM: New York City, NY, USA, 2011; pp. 61–72. [Google Scholar] [CrossRef]
- Lee, J.; Cho, H.; Park, J.-W.; Cha, Y.; Hwang, S.; Nie, Z.; Wen, J.-R. Hybrid entity clustering using crowds and data. VLDB J. 2013, 22, 711–726. [Google Scholar] [CrossRef]
- Park, H.; Garcia-Molina, H.; Pang, R.; Polyzotis, N.; Parameswaran, A.; Widom, J. Deco: A system for declarative crowdsourcing. Proc. VLDB Endow. 2012, 5, 1990–1993. [Google Scholar] [CrossRef]
- Yan, T.; Kumar, V.; Ganesan, D. CrowdSearch: Exploiting crowds for accurate real-time image search on mobile phones. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 77–90. [Google Scholar] [CrossRef]
- Alonso, O.; Mizzaro, S. Can we get rid of TREC assessors? Using Mechanical Turk for relevance assessment. In Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation 2009, Boston, MA, USA, 23 July 2009. [Google Scholar]
- Yan, Y.; Rosales, R.; Fung, G.; Dy, J.G. Active learning from crowds. In Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, 28 June–2 July 2011; Omnipress: Madison, WI, USA, 2011; pp. 1161–1168. [Google Scholar]
- Dawid, A.P.; Skene, A.M. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Appl. Stat. 1979, 28, 20. [Google Scholar] [CrossRef]
- Lee, D.; Das Sarma, A.; Parameswaran, A. Aggregating crowdsourced image segmentations. HCOMP 2018. [Google Scholar]
- Dang, D.; Liu, Y.; Zhang, X.; Huang, S. A Crowdsourcing Worker Quality Evaluation Algorithm on MapReduce for Big Data Applications. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 1879–1888. [Google Scholar] [CrossRef]
- Vuurens, J.B.P.; Eickhoff, C. How Much Spam Can You Take? An Analysis of Crowdsourcing Results to Increase Accuracy. In Proceedings of the ACM SIGIR Workshop on Crowdsourcing for Information Retrieval (CIR’11), Beijing, China, 28 July 2011. [Google Scholar]
- Chai, C.; Li, G. Human-in-the-loop Techniques in Machine Learning. IEEE Data Eng. Bull. 2020, 43, 37–52. [Google Scholar]
- Wu, X.; Xiao, L.; Sun, Y.; Zhang, J.; Ma, T.; He, L. A survey of human-in-the-loop for machine learning. Future Gener. Comput. Syst. 2021, 135, 364–381. [Google Scholar] [CrossRef]
- García Rodríguez, C.; Vitrià, J.; Mora, O. Uncertainty-Based Human-in-the-Loop Deep Learning for Land Cover Segmentation. Remote Sens. 2020, 12, 3836. [Google Scholar] [CrossRef]
- Buscombe, D.; Goldstein, E.; Sherwood, C.; Bodine, C.; Brown, J.; Favela, J.; Faithpatrick, S.; Kranenburg, C.; Over, J.-S.; Ritchie, A.; et al. Human-in-the-Loop Segmentation of Earth Surface Imagery. Earth Space Sci. 2022, 9, e2021EA002085. [Google Scholar] [CrossRef]
- Schulz, J.; Buck, A.; Anderson, D.T.; Keller, J.M.; Scott, G.; Luke, R.H., III. Human-in-the-loop extension to stream classification for labeling of low altitude drone imagery. In Proceedings of the Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2021, Online, 12–17 April 2021; Volume 117480. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Bai, L.; Yang, Y.; Ma, Q. Application of an Improved U-Net Neural Network on Fracture Segmentation from Outcrop Images. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3512–3515. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Z.; Bai, L.; Zhang, J.; Tao, J.; Chen, L. Detection of industrial storage tanks at the city-level from optical satellite remote sensing images. In Image and Signal Processing for Remote Sensing XXVII; SPIE: Manchester, UK, 2021; pp. 266–272. [Google Scholar]
- Liu, P.; Wang, L.; Ranjan, R.; He, G.; Zhao, L. A Survey on Active Deep Learning: From Model Driven to Data Driven. ACM Comput. Surv 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Eom, K.B. Active Deep Learning for Classification of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712–724. [Google Scholar] [CrossRef]
- Růžička, V.; D’Aronco, S.; Wegner, J.D.; Schindler, K. Deep Active Learning in Remote Sensing for data efficient Change Detection. arXiv 2020, arXiv:2008.11201. [Google Scholar] [CrossRef]
- Danielsson, P.-E. Euclidean distance mapping. Comput. Graph. Image Process. 1980, 14, 227–248. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change Detection in Remote Sensing Images Using Conditional Adversarial Networks. ISPRS—Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, XLII-2, 565–571. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar] [CrossRef]
Experiment Environments | Details |
---|---|
GPU | NVIDIA GeForce RTX 2080Ti GPU (11264M) |
CPU | Intel i9-9900KF CPU (3.60 GHz) |
CUDA | 10.2 |
RAM | 32 GB |
Operating system | Ubantu18.04 |
Development framework | Python 3.7, PyTorch 1.5.1 |
Annotator ID | T1 | T2 | T3 | T4 | T5 | T6 | T7 | Average K Value |
---|---|---|---|---|---|---|---|---|
0001 | 0.365 | 0.403 | 0.414 | 0.426 | 0.368 | 0.396 | 0.359 | 0.390 |
0002 | 0.444 | 0.461 | 0.428 | 0.436 | 0.368 | 0.387 | 0.367 | 0.413 |
0003 | 0.486 | 0.448 | 0.436 | 0.454 | 0.441 | 0.413 | 0.387 | 0.438 |
0004 | 0.483 | 0.369 | 0.397 | 0.411 | 0.377 | 0.423 | 0.409 | 0.410 |
0005 | 0.582 | 0.451 | 0.468 | 0.465 | 0.475 | 0.417 | 0.448 | 0.472 |
0006 | 0.511 | 0.483 | 0.444 | 0.487 | 0.441 | 0.431 | 0.402 | 0.457 |
0007 | 0.456 | 0.391 | 0.437 | 0.381 | 0.362 | 0.371 | 0.369 | 0.378 |
0008 | 0.410 | 0.363 | 0.328 | 0.369 | 0.302 | 0.327 | 0.280 | 0.340 |
0009 | 0.387 | 0.346 | 0.373 | 0.383 | 0.344 | 0.360 | 0.304 | 0.357 |
0010 | 0.549 | 0.487 | 0.474 | 0.556 | 0.481 | 0.443 | 0.426 | 0.488 |
0011 | 0.465 | 0.466 | 0.455 | 0.397 | 0.416 | 0.397 | 0.396 | 0.427 |
0012 | 0.512 | 0.458 | 0.448 | 0.479 | 0.427 | 0.410 | 0.408 | 0.449 |
0013 | 0.538 | 0.508 | 0.469 | 0.512 | 0.472 | 0.426 | 0.434 | 0.480 |
0014 | 0.508 | 0.477 | 0.459 | 0.503 | 0.432 | 0.431 | 0.407 | 0.459 |
0015 | 0.407 | 0.349 | 0.360 | 0.354 | 0.339 | 0.416 | 0.359 | 0.369 |
0016 | 0.422 | 0.361 | 0.330 | 0.362 | 0.358 | 0.350 | 0.317 | 0.357 |
0017 | 0.493 | 0.492 | 0.540 | 0.507 | 0.527 | 0.505 | 0.480 | 0.506 |
0018 | 0.371 | 0.338 | 0.344 | 0.375 | 0.310 | 0.307 | 0.279 | 0.332 |
0019 | 0.441 | 0.418 | 0.451 | 0.408 | 0.353 | 0.393 | 0.369 | 0.405 |
0020 | 0.395 | 0.390 | 0.375 | 0.391 | 0.383 | 0.361 | 0.335 | 0.376 |
Qualification Numbering | Annotator Qualification Description (K Is the Similarity Threshold) |
---|---|
1 | Professional annotator, K > 0.5 |
2 | Excellent annotator, 0.475 < K < 0.5 |
3 | Good annotator, 0.425 < K < 0.475 |
4 | Adequate annotator, 0.4 < K < 0.425 |
5 | Average annotator, 0.35 < K < 0.4 |
6 | Unqualified annotator, K < 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, J.; Bai, L.; Chang, H.; Chen, Y.; Zhang, Y.; Tao, J. A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning. Sensors 2024, 24, 1509. https://doi.org/10.3390/s24051509
Wang Z, Zhang J, Bai L, Chang H, Chen Y, Zhang Y, Tao J. A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning. Sensors. 2024; 24(5):1509. https://doi.org/10.3390/s24051509
Chicago/Turabian StyleWang, Zhibao, Jie Zhang, Lu Bai, Huan Chang, Yuanlin Chen, Ying Zhang, and Jinhua Tao. 2024. "A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning" Sensors 24, no. 5: 1509. https://doi.org/10.3390/s24051509
APA StyleWang, Z., Zhang, J., Bai, L., Chang, H., Chen, Y., Zhang, Y., & Tao, J. (2024). A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning. Sensors, 24(5), 1509. https://doi.org/10.3390/s24051509