Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔHBO2 and ΔHHB Measures for Comprehensive Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Channel Selection
2.3. Dataset Organisation
2.4. Signal Processing: Filtration and Averaging
2.5. Feature Extraction
2.6. Feature Selection
2.7. Classification
2.8. Statistical Analysis
3. Results
3.1. Classification Results
3.2. Statistical Analyses
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajesh, M.; Muthu, J.S.; Suseela, G. iPainRelief-A pain assessment and management app for a smart phone implementing sensors and soft computing tools. In Proceedings of the 2013 International Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 21–22 February 2013; pp. 434–441. [Google Scholar]
- Dueñas, M.; Ojeda, B.; Salazar, A.; Mico, J.A.; Failde, I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 2016, 9, 457–467. [Google Scholar] [CrossRef]
- Blyth, F.M.; March, L.M.; Brnabic, A.J.; Jorm, L.R.; Williamson, M.; Cousins, M.J. Chronic pain in Australia: A prevalence study. Pain 2001, 89, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Painaustralia. The Cost of Pain in Australia; Painaustralia: Deakin, Australia, 2019. [Google Scholar]
- van Leeuwen, M.T.; Blyth, F.M.; March, L.M.; Nicholas, M.K.; Cousins, M.J. Chronic pain and reduced work effectiveness: The hidden cost to Australian employers. Eur. J. Pain 2006, 10, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.L.; de Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Hernández, D.; Reina-Tosina, J.; Roa, L.M. Sensor technologies to manage the physiological traits of chronic pain: A review. Sensors 2020, 20, 365. [Google Scholar] [CrossRef] [PubMed]
- Cowen, R.; Stasiowska, M.K.; Laycock, H.; Bantel, C. Assessing pain objectively: The use of physiological markers. Anaesthesia 2015, 70, 828–847. [Google Scholar] [CrossRef] [PubMed]
- Breivik, H.; Borchgrevink, P.C.; Allen, S.M.; Rosseland, L.A.; Romundstad, L.; Breivik Hals, E.; Kvarstein, G.; Stubhaug, A. Assessment of pain. Br. J. Anaesth. 2008, 101, 17–24. [Google Scholar] [CrossRef]
- Turk, D.C.; Melzack, R. Handbook of Pain Assessment; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Luo, J.; Zhu, H.Q.; Gou, B.; Wang, X.Q. Neuroimaging assessment of pain. Neurotherapeutics 2022, 19, 1467–1488. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Atlas, L.Y.; Lindquist, M.A.; Roy, M.; Woo, C.W.; Kross, E. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 2013, 368, 1388–1397. [Google Scholar] [CrossRef]
- Hu, X.S.; Nascimento, T.D.; Bender, M.C.; Hall, T.; Petty, S.; O’Malley, S.; Ellwood, R.P.; Kaciroti, N.; Maslowski, E.; DaSilva, A.F. Feasibility of a real-time clinical augmented reality and artificial intelligence framework for pain detection and localization from the brain. J. Med. Internet Res. 2019, 21, e13594. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Huang, X.; Ou, K.L. Toward a functional near-infrared spectroscopy-based monitoring of pain assessment for nonverbal patients. J. Biomed. Opt. 2017, 22, 1–12. [Google Scholar] [PubMed]
- Fernandez Rojas, R.; Brown, N.; Waddington, G.; Goecke, R. A systematic review of neurophysiological sensing for the assessment of acute pain. NPJ Digit. Med. 2023, 6, 76. [Google Scholar] [CrossRef]
- Yücel, M.A.; Aasted, C.M.; Petkov, M.P.; Borsook, D.; Boas, D.A.; Becerra, L. Specificity of hemodynamic brain responses to painful stimuli: A functional near-infrared spectroscopy study. Sci. Rep. 2015, 5, 9469. [Google Scholar] [CrossRef]
- Lemm, S.; Blankertz, B.; Dickhaus, T.; Müller, K.R. Introduction to machine learning for brain imaging. Neuroimage 2011, 56, 387–399. [Google Scholar] [CrossRef]
- Joseph, G.; Mcculloch, C.; Nevitt, M.; Link, T.; Sohn, J. Machine learning for predicting knee osteoarthritis progression over 8 years using combined MR imaging features, demographics, and clinical factors: Data from the osteoarthritis initiative. Osteoarthr. Cartil. 2021, 29, S45–S46. [Google Scholar] [CrossRef]
- Lötsch, J.; Ultsch, A. Machine learning in pain research. Pain 2018, 159, 623. [Google Scholar] [CrossRef]
- Brown, J.E.; Chatterjee, N.; Younger, J.; Mackey, S. Towards a physiology-based measure of pain: Patterns of human brain activity distinguish painful from non-painful thermal stimulation. PloS ONE 2011, 6, e24124. [Google Scholar] [CrossRef] [PubMed]
- Gram, M.; Graversen, C.; Olesen, A.E.; Drewes, A. Machine learning on encephalographic activity may predict opioid analgesia. Eur. J. Pain 2015, 19, 1552–1561. [Google Scholar] [CrossRef]
- Pourshoghi, A.; Zakeri, I.; Pourrezaei, K. Application of functional data analysis in classification and clustering of functional near-infrared spectroscopy signal in response to noxious stimuli. J. Biomed. Opt. 2016, 21, 101411. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Rojas, R.; Huang, X.; Ou, K.L. A machine learning approach for the identification of a biomarker of human pain using fNIRS. Sci. Rep. 2019, 9, 5645. [Google Scholar] [CrossRef]
- Zeng, X.; Tang, W.; Yang, J.; Lin, X.; Du, M.; Chen, X.; Yuan, Z.; Zhang, Z.; Chen, Z. Diagnosis of Chronic Musculoskeletal Pain by Using Functional Near-Infrared Spectroscopy and Machine Learning. Bioengineering 2023, 10, 669. [Google Scholar] [CrossRef] [PubMed]
- Sousani, M.; Rojas, R.F.; Preston, E.; Ghahramani, M. Towards a Multi-Modal Brain-Body Assessment in Parkinson’s Disease: A Systematic Review in fNIRS (February 2023). IEEE J. Biomed. Health Inform. 2023, 27, 4840–4853. [Google Scholar] [CrossRef]
- Udina, C.; Avtzi, S.; Durduran, T.; Holtzer, R.; Rosso, A.L.; Castellano-Tejedor, C.; Perez, L.M.; Soto-Bagaria, L.; Inzitari, M. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: A review. Front. Aging Neurosci. 2020, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K.K.; Kim, M.; Jeon, Y.; Kim, B.C.; Kim, J.G.; Lee, K.H.; Song, J.I.; Gwak, J. Deep learning-based multilevel classification of Alzheimer’s disease using non-invasive functional near-infrared spectroscopy. Front. Aging Neurosci. 2022, 14, 810125. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Bauernfeind, G.; Wriessnegger, S.C.; Neuper, C. Focal frontal (de) oxyhemoglobin responses during simple arithmetic. Int. J. Psychophysiol. 2010, 76, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, K.D.; Peng, K.; Berry, D.; Green, S.; Labadie, R.; Kussman, B.; Borsook, D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci. Biobehav. Rev. 2021, 120, 335–353. [Google Scholar] [CrossRef]
- Naseer, N.; Hong, K.S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef]
- Khan, M.U.; Aziz, S.; Hirachan, N.; Joseph, C.; Li, J.; Fernandez-Rojas, R. Experimental Exploration of Multilevel Human Pain Assessment Using Blood Volume Pulse (BVP) Signals. Sensors 2023, 23, 3980. [Google Scholar] [CrossRef]
- Usman, A.; Choudhry, M.A. A precision detection technique for power disturbance in electrical system. Electr. Eng. 2022, 104, 781–796. [Google Scholar] [CrossRef]
- Attivissimo, F.; D’Alessandro, V.I.; De Palma, L.; Lanzolla, A.M.L.; Di Nisio, A. Non-Invasive Blood Pressure Sensing via Machine Learning. Sensors 2023, 23, 8342. [Google Scholar] [CrossRef]
- Li, T.; Zhu, S.; Ogihara, M. Using discriminant analysis for multi-class classification: An experimental investigation. Knowl. Inf. Syst. 2006, 10, 453–472. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, B.; Zhou, X.; Ding, X.; Shan, Z. An Enhanced Quantum K-Nearest Neighbor Classification Algorithm Based on Polar Distance. Entropy 2023, 25, 127. [Google Scholar] [CrossRef] [PubMed]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Fan, C.C.; Chen, S.; Fan, C.; Hou, Z.G.; Chen, J.; Peng, L.; Xiang, K.; Wu, Y.; et al. Comparing Multi-Dimensional fNIRS Features Using Bayesian Optimization-Based Neural Networks for Mild Cognitive Impairment (MCI) Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1019–1029. [Google Scholar] [CrossRef]
- Elsayad, A.M.; Nassef, A.M.; Al-Dhaifallah, M. Bayesian optimization of multiclass SVM for efficient diagnosis of erythemato-squamous diseases. Biomed. Signal Process. Control. 2022, 71, 103223. [Google Scholar] [CrossRef]
- Pauli, M.P.; Pohl, C.; Golz, M. Balanced leave-one-subject-out cross-validation for microsleep classification. Curr. Dir. Biomed. Eng. 2021, 7, 147–150. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Liao, M.; Romero, J.; Huang, X.; Ou, K.L. Cortical network response to acupuncture and the effect of the hegu point: An fNIRS study. Sensors 2019, 19, 394. [Google Scholar] [CrossRef]
Features | Definitions |
---|---|
Log Energy | |
Crest Factor | |
Shape Factor | |
Impulse Factor | |
Margin Factor | |
Mobility | |
Complexity | |
Mean Absolute Deviation of First Derivative | |
Range | |
Variation in First Derivative |
Model | Parameters | + | ||
---|---|---|---|---|
Disc | Discriminant Type | Pseudo Linear | Linear | Diagonal Linear |
Gamma | 7.55 × 10−4 | 0.0025 | 0.006 | |
Delta | 3.51 × 10−5 | 2.96 × 10−5 | 2.12 × 10−5 | |
KNN | Number of Neighbours | 211 | 1 | 25 |
Distance | Chebychev | Cosine | City Block | |
Distance Weight | Inverse | Inverse | Equal | |
Exponent | – | – | – | |
Neighbour Search | KD-Tree | Exhaustive | Exhaustive | |
Standardisation | Yes | Yes | Yes | |
SVM | Coding | One vs. All | One vs. All | One vs. One |
Box Constraint | 2.1888 | 10.3923 | 980.4894 | |
Kernel Scale | – | – | 13.2018 | |
Kernel Function | Polynomial | Polynomial | Gaussian | |
Polynomial Order | 3 | 3 | – | |
Standardise | Yes | Yes | Yes |
Measure | Model | # | Acc | Sen | Spec | F1 Score |
---|---|---|---|---|---|---|
Disc | 10 | |||||
KNN | ||||||
SVM | ||||||
Disc | 10 | |||||
KNN | ||||||
SVM | ||||||
Disc | 20 | |||||
KNN | ||||||
SVM |
Measure | Model | # | Acc | Sen | Spec | F1 Score |
---|---|---|---|---|---|---|
Disc | 10 | 51.78 ± 9.94 | 74.78 ± 19.43 | 73.30 ± 11.91 | 85.98 ± 9.60 | |
KNN | 7 | 44.22 ± 8.16 | 55.36 ± 15.38 | 70.22 ± 13.16 | 76.30 ± 7.20 | |
SVM | 9 | 65.71 ± 5.97 | 93.18 ± 8.03 | 95.99 ± 4.24 | 96.77 ± 3.67 | |
Disc | 10 | 50.94 ± 7.6 | 73.57 ± 12.12 | 75.77 ± 9.53 | 85.35 ± 6.42 | |
KNN | 10 | 41.83 ± 8.34 | 44.36 ± 14.3 | 74.23 ± 9.10 | 73.14 ± 5.75 | |
SVM | 9 | 63.42 ± 6.85 | 94.44 ± 8.33 | 97.22 ± 3.27 | 97.40 ± 3.84 | |
Disc | 20 | 56.23 ± 6.84 | 76.32 ± 11.62 | 79.32 ± 10.81 | 87.24 ± 5.73 | |
KNN | 18 | 40.8 ± 7.26 | 44.58 ± 15.27 | 68.83 ± 9.34 | 71.72 ± 6.34 | |
SVM | 15 | 68.51 ± 9.02 | 94.70 ± 5.77 | 94.29 ± 4.92 | 97.33 ± 2.92 |
Measure | # | Selected Features |
---|---|---|
9 | Mobility, Complexity, Range, Shape Factor, Variation in First Derivative, Impulse Factor, Mean Absolute Deviation of First Derivative, Log Energy, Crest Factor. | |
9 | Crest Factor, Complexity, Shape Factor, Mobility, Range, Variation in First Derivative, Log Energy, Mean Absolute Deviation of First Derivative, Margin Factor. | |
15 | : Mobility, Complexity, Range, Shape Factor, Variation in First Derivative, Impulse Factor, Mean Absolute Deviation of First Derivative, Log Energy, Crest Factor. : Crest Factor, Complexity, Shape Factor, Mobility, Range, Variation in First Derivative. |
Feature | Group One | Group Two | Mean Diff. | Std. Error | Sig. | Lower Bound | Upper Bound |
---|---|---|---|---|---|---|---|
Log Energy | No Pain | Low Pain | 73.67 | 41.110 | 0.073 | −7.00 | 154.33 |
High Pain | 96.99 * | 41.110 | 0.018 | 16.33 | 177.66 | ||
Low Pain | No Pain | −73.67 | 41.110 | 0.073 | −154.33 | 7.00 | |
High Pain | 23.33 | 40.966 | 0.569 | −57.06 | 103.71 | ||
High Pain | No Pain | −96.99 * | 41.110 | 0.018 | −177.66 | −16.33 | |
Low Pain | −23.33 | 40.966 | 0.569 | −103.71 | 57.06 | ||
Crest factor | No Pain | Low Pain | −0.02 | 0.039 | 0.685 | −0.09 | 0.06 |
High Pain | 0.078 * | 0.039 | 0.044 | 0.00 | 0.15 | ||
Low Pain | No Pain | 0.02 | 0.039 | 0.685 | −0.06 | 0.09 | |
High Pain | 0.094 * | 0.039 | 0.015 | 0.02 | 0.17 | ||
High Pain | No Pain | −0.078 * | 0.039 | 0.044 | −0.15 | 0.00 | |
Low Pain | −0.094 * | 0.039 | 0.015 | −0.17 | −0.02 | ||
Shape factor | No Pain | Low Pain | −0.017 * | 0.006 | 0.008 | −0.03 | 0.00 |
High Pain | −0.01 | 0.006 | 0.067 | −0.02 | 0.00 | ||
Low Pain | No Pain | 0.017 * | 0.006 | 0.008 | 0.00 | 0.03 | |
High Pain | 0.01 | 0.006 | 0.402 | −0.01 | 0.02 | ||
High Pain | No Pain | 0.01 | 0.006 | 0.067 | 0.00 | 0.02 | |
Low Pain | −0.01 | 0.006 | 0.402 | −0.02 | 0.01 | ||
Impulse factor | No Pain | Low Pain | −0.05 | 0.055 | 0.386 | −0.16 | 0.06 |
High Pain | 0.08 | 0.055 | 0.167 | −0.03 | 0.19 | ||
Low Pain | No Pain | 0.05 | 0.055 | 0.386 | −0.06 | 0.16 | |
High Pain | 0.125 * | 0.055 | 0.024 | 0.02 | 0.23 | ||
High Pain | No Pain | −0.08 | 0.055 | 0.167 | −0.19 | 0.03 | |
Low Pain | −0.125 * | 0.055 | 0.024 | −0.23 | −0.02 | ||
Range | No Pain | Low Pain | −0.165 * | 0.037 | −0.24 | −0.09 | |
High Pain | −0.129 * | 0.037 | 0.001 | −0.20 | −0.06 | ||
Low Pain | No Pain | 0.165 * | 0.037 | 0.09 | 0.24 | ||
High Pain | 0.04 | 0.037 | 0.33 | −0.04 | 0.11 | ||
High Pain | No Pain | 0.129 * | 0.037 | 0.001 | 0.06 | 0.20 | |
Low Pain | −0.04 | 0.037 | 0.33 | −0.11 | 0.04 |
Feature | Group One | Group Two | Mean diff. | Std. Error | Sig. | Lower Bound | Upper Bound |
---|---|---|---|---|---|---|---|
Log Energy | No Pain | Low Pain | 104.153 * | 49.629 | 0.036 | 6.770 | 201.535 |
High Pain | 110.774 * | 49.629 | 0.026 | 13.391 | 208.156 | ||
Low Pain | No Pain | −104.153 * | 49.629 | 0.036 | −201.535 | −6.770 | |
High Pain | 6.62 | 49.4554 | 0.894 | −90.420 | 103.662 | ||
High Pain | No Pain | −110.774 * | 49.629 | 0.026 | −208.156 | −13.391 | |
Low Pain | −6.62 | 49.455 | 0.894 | −103.662 | 90.420 | ||
Margin Factor | No Pain | Low Pain | 1.629 * | 0.572 | 0.004 | 0.506 | 2.752 |
High Pain | 0.621 | 0.572 | 0.277 | −0.501 | 1.744 | ||
Low Pain | No Pain | −1.629 * | 0.572 | 0.004 | −2.752 | −0.506 | |
High Pain | −1.007 | 0.570 | 0.078 | −2.126 | 0.111 | ||
High Pain | No Pain | −0.621 | 0.572 | 0.277 | −1.744 | 0.501 | |
Low Pain | 1.007 | 0.570 | 0.078 | −0.111 | 2.126 | ||
Range | No Pain | Low Pain | −0.106 * | 0.04 | 0.00 | −0.18 | −0.04 |
High Pain | −0.072 * | 0.04 | 0.04 | −0.14 | 0.00 | ||
Low Pain | No Pain | 0.106 * | 0.04 | 0.00 | 0.04 | 0.18 | |
High Pain | 0.03 | 0.04 | 0.34 | −0.04 | 0.10 | ||
High Pain | No Pain | 0.072 * | 0.04 | 0.04 | 0.00 | 0.14 | |
Low Pain | −0.03 | 0.04 | 0.34 | −0.10 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.U.; Sousani, M.; Hirachan, N.; Joseph, C.; Ghahramani, M.; Chetty, G.; Goecke, R.; Fernandez-Rojas, R. Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔHBO2 and ΔHHB Measures for Comprehensive Analysis. Sensors 2024, 24, 458. https://doi.org/10.3390/s24020458
Khan MU, Sousani M, Hirachan N, Joseph C, Ghahramani M, Chetty G, Goecke R, Fernandez-Rojas R. Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔHBO2 and ΔHHB Measures for Comprehensive Analysis. Sensors. 2024; 24(2):458. https://doi.org/10.3390/s24020458
Chicago/Turabian StyleKhan, Muhammad Umar, Maryam Sousani, Niraj Hirachan, Calvin Joseph, Maryam Ghahramani, Girija Chetty, Roland Goecke, and Raul Fernandez-Rojas. 2024. "Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔHBO2 and ΔHHB Measures for Comprehensive Analysis" Sensors 24, no. 2: 458. https://doi.org/10.3390/s24020458
APA StyleKhan, M. U., Sousani, M., Hirachan, N., Joseph, C., Ghahramani, M., Chetty, G., Goecke, R., & Fernandez-Rojas, R. (2024). Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔHBO2 and ΔHHB Measures for Comprehensive Analysis. Sensors, 24(2), 458. https://doi.org/10.3390/s24020458