Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Grid SWAT Model
2.3. WATERNET Data
2.4. Ensemble Kalman Filter
2.5. Local Error Subspace Transform Kalman Filter
2.6. GSWAT-PDAF Data Assimilation System
3. Experiment Setup
3.1. Observing System Simulation Experiments (OSSEs)
3.2. Benchmark and Ensemble Generation
3.3. Soil Moisture Data Assimilation Experiment
4. Results and Discussion
4.1. Performance of the Soil Moisture Data Assimilation Experiment
4.2. Comparisons with Relevant Literatures
4.3. Limitations and Prospects of This Study
- (1)
- Data source bias: The results of the hydrological data assimilation may be influenced by bias in the data source. The forcing data (e.g., precipitation and air temperature) used comes from reanalysis data or a limited number of monitoring stations and these stations have spatial distribution biases, then the assimilation results may be affected by this spatial bias. Then the high spatiotemporal resolution and accuracy forcing data is needed in the hydrological data assimilation applications.
- (2)
- Model structure bias: The structure and parameter selection of the hydrological model (Grid SWAT model) itself may lead to bias in the assimilation results. When the model structure is not accurate enough or the parameter settings are unreasonable, it may affect the quality of the assimilation results.
- (3)
- Measurement errors and uncertainty: Measurement errors and uncertainty in WATERNET observation data are important limiting factors in this hydrological data assimilation. If the precision of observation data is not high or there is significant uncertainty, the accuracy and reliability of the assimilation results may be affected.
- (4)
- Temporal and spatial resolution: The precision and credibility of hydrological data assimilation results are also related to the temporal and spatial resolution of observation data. If the temporal and spatial resolution of observation data is insufficient to capture the details of surface hydrological processes, then the assimilation results may be limited.
- (5)
- Prior information: The prior information, including the initial state of the system, such as soil moisture content, groundwater levels, or snowpack conditions, used in hydrological data assimilation may also introduce bias. Prior information helps to constrain the range of possible solutions during data assimilation, providing a starting point for estimating the current state of the system. It is used in combination with observation data to improve the accuracy and reliability of the assimilated results. If the prior information is inaccurate or incomplete, the assimilation results may be affected by this prior information.
- (1)
- Inflation factor: As a result of unaccounted model errors and a restricted ensemble size, state and parameter uncertainties may decrease to an insufficient level during assimilation [80]. The primary challenge in practical applications lies in accurately representing model uncertainties to prevent the emergence of spurious covariance during data assimilation. While assimilating observations, the uncertainty in parameters and states gradually decreased over time. However, despite this reduction in uncertainty, incorrect updates of parameters and states were obtained. These errors could not be rectified by assimilating additional observations to improve the representation of the hydrological system. Inflation methods can effectively increase state uncertainties. Along with the localization method, the inflation factors can also be an improvement configuration in the context of sequential data assimilation methods [74,75]. Typically, inflation functions are regarded as functions of the singular values of background or analysis perturbations. However, some researches have demonstrated that it is more beneficial to view inflation functions as functions of the reduction factors of background singular values after assimilation [81]. The optimal configuration of the inflation factor can be studied in the future work.
- (2)
- (3)
- Machine learning: In recent years, machine learning methods have played a significant role in advancing the field of data assimilation. For instance, a new Hybrid Data Assimilation (DA) method based on a Machine Learning (HDA-ML) method overcomes the drawbacks of the traditional hybrid 4DVar-EnKF method by using neural networks to replace the tangent linear and adjoint models, and adopting a convolutional neural network (CNN) model to adaptively combine the results of 4DVar and EnKF [85]. He et al. [86] introduces a hybrid Data Assimilation and Machine Learning framework (DA-ML method) implemented in the Weather Research and Forecasting (WRF) model to optimize surface soil and vegetation conditions. The results demonstrated that the WRF (DA-ML) model effectively improves estimations of sensible and latent heat fluxes, evapotranspiration, air temperature, and specific humidity, reducing biases and simulating more realistic oasis–desert interactions. The machine learning will be integrated in our data assimilation framework in our next work.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiao, L.; Zuo, Z.; Zhang, R.; Piao, S.; Xiao, D.; Zhang, K. Soil moisture-atmosphere coupling accelerates global warming. Nat. Commun. 2023, 14, 4908. [Google Scholar] [CrossRef] [PubMed]
- Koster, R.D.; Liu, Q.; Crow, W.T.; Reichle, R.H. Late-fall satellite-based soil moisture observations show clear connections to subsequent spring streamflow. Nat. Commun. 2023, 14, 3545. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.S.; Crow, W.T.; Zhu, Y.H.; Ouyang, F.; Su, J.B. Improving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow Depth. Remote Sens. 2016, 8, 503. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1504–1512. [Google Scholar] [CrossRef]
- Djamai, N.; Magagi, R.; Goita, K.; Merlin, O.; Kerr, Y.; Roy, A. A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens. Environ. 2016, 184, 1–14. [Google Scholar] [CrossRef]
- Pau, G.S.H.; Shen, C.P.; Riley, W.J.; Liu, Y.N. Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models. Water Resour. Res. 2016, 52, 791–812. [Google Scholar] [CrossRef]
- Pinel, N.; Le Bastard, C.; Bourlier, C. Modeling of EM Wave Coherent Scattering From a Rough Multilayered Medium With the Scalar Kirchhoff Approximation for GPR Applications. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1654–1664. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Xue, Z.H. Calibrated Integral Equation Model for Bare Soil Moisture Retrieval of Synthetic Aperture Radar: A Case Study in Linze County. Appl. Sci. 2020, 10, 7921. [Google Scholar] [CrossRef]
- Burkholder, R.J.; Johnson, J.T.; Sanamzadeh, M.; Tsang, L.; Tan, S. Microwave Thermal Emission Characteristics of a Two-Layer Medium With Rough Interfaces Using the Second-Order Small Perturbation Method. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1780–1784. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, F.; Zheng, Y.; Chen, L.; Zhang, J.; Li, X. Probabilistic calibration of a coupled hydro-mechanical slope stability model with integration of multiple observations. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2018, 12, 169–182. [Google Scholar] [CrossRef]
- Shakya, A.K.; Ramola, A.; Kandwal, A.; Vidyarthi, A. Soil moisture sensor for agricultural applications inspired from state of art study of surfaces scattering models & semi-empirical soil moisture models. J. Saudi Soc. Agric. Sci. 2021, 20, 559–572. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef]
- Schaphoff, S.; von Bloh, W.; Rammig, A.; Thonicke, K.; Biemans, H.; Forkel, M.; Gerten, D.; Heinke, J.; Jaegermeyr, J.; Knauer, J.; et al. LPJmL4-a dynamic global vegetation model with managed land—Part 1: Model description. Geosci. Model Dev. 2018, 11, 1343–1375. [Google Scholar] [CrossRef]
- Sutanudjaja, E.H.; van Beek, R.; Wanders, N.; Wada, Y.; Bosmans, J.H.C.; Drost, N.; van der Ent, R.J.; de Graaf, I.E.M.; Hoch, J.M.; de Jong, K.; et al. PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Azimi, S.; Dariane, A.B.; Modanesi, S.; Bauer-Marschallinger, B.; Bindlish, R.; Wagner, W.; Massari, C. Assimilation of Sentinel 1 and SMAP—based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and product spatial resolution on flood simulations in small basins. J. Hydrol. 2020, 581, 124367. [Google Scholar] [CrossRef]
- Odusanya, A.E.; Mehdi, B.; Schurz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef]
- Igder, O.M.; Alizadeh, H.; Mojaradi, B.; Bayat, M. Multivariate assimilation of satellite-based leaf area index and ground-based river streamflow for hydrological modelling of irrigated watersheds using SWAT. J. Hydrol. 2022, 610, 128012. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. Swat Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. Asabe 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.L.; Gu, J.; Huang, C.L.; Li, X. SWAT-Based Hydrological Data Assimilation System (SWAT-HDAS): Description and Case Application to River Basin-Scale Hydrological Predictions. J. Adv. Model Earth Syst. 2017, 9, 2863–2882. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Preetha, P.P.; Joseph, N.; Narasimhan, B. Quantifying Surface Water and Ground Water Interactions using a Coupled SWAT_FEM Model: Implications of Management Practices on Hydrological Processes in Irrigated River Basins. Water Resour. Manag. 2021, 35, 2781–2797. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Perez-Minana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2007; pp. 1596–1602. [Google Scholar]
- Balivada, S.; Grant, G.; Zhang, X.; Ghosh, M.; Guha, S.; Matamala, R. A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation. Sensors 2022, 22, 3913. [Google Scholar] [CrossRef]
- Bertocco, M.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning. Sensors 2023, 23, 2033. [Google Scholar] [CrossRef]
- Bogena, H.R.; Weuthen, A.; Huisman, J.A. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors 2022, 22, 9792. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. Active Learning for Efficient Soil Monitoring in Large Terrain with Heterogeneous Sensor Network. Sensors 2023, 23, 2365. [Google Scholar] [CrossRef]
- Garcia, L.; Parra, L.; Jimenez, J.M.; Parra, M.; Lloret, J.; Mauri, P.V.; Lorenz, P. Deployment Strategies of Soil Monitoring WSN for Precision Agriculture Irrigation Scheduling in Rural Areas. Sensors 2021, 21, 1693. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.-C.; Chen, H.-E.; Tfwala, S.S.; Lin, Y.-F.; Chen, S.-C. The Application of Wireless Underground Sensor Networks to Monitor Seepage inside an Earth Dam. Sensors 2023, 23, 3795. [Google Scholar] [CrossRef] [PubMed]
- Lloret, J.; Sendra, S.; Garcia, L.; Jimenez, J.M. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture. Sens. Basel 2021, 21, 7243. [Google Scholar] [CrossRef] [PubMed]
- Lopez, E.; Vionnet, C.; Ferrer-Cid, P.; Barcelo-Ordinas, J.M.; Garcia-Vidal, J.; Contini, G.; Prodolliet, J.; Maiztegui, J. A Low-Power IoT Device for Measuring Water Table Levels and Soil Moisture to Ease Increased Crop Yields. Sensors 2022, 22, 6840. [Google Scholar] [CrossRef] [PubMed]
- Lozoya, C.; Favela-Contreras, A.; Aguilar-Gonzalez, A.; Felix-Herran, L.C.; Orona, L. Energy-Efficient Wireless Communication Strategy for Precision Agriculture Irrigation Control. Sensors 2021, 21, 5541. [Google Scholar] [CrossRef] [PubMed]
- Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors. Sensors 2021, 21, 5110. [Google Scholar] [CrossRef]
- Rivera Guzman, E.F.; Manay Chochos, E.D.; Chiliquinga Malliquinga, M.D.; Baldeon Egas, P.F.; Toasa Guachi, R.M. LoRa Network-Based System for Monitoring the Agricultural Sector in Andean Areas: Case Study Ecuador. Sensors 2022, 22, 6743. [Google Scholar] [CrossRef]
- Saeidi, T.; Alhawari, A.R.H.; Almawgani, A.H.M.; Alsuwian, T.; Imran, M.A.; Abbasi, Q. High Gain Compact UWB Antenna for Ground Penetrating Radar Detection and Soil Inspection. Sensors 2022, 22, 5183. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, L.; Huo, J.; Zhu, W. An Eco-Hydrology Wireless Sensor Demonstration Network in High-Altitude and Alpine Environment in the Heihe River Basin of China. Wirel. Sens. Netw. 2012, 4, 138–146. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, J.H.; Heuvelink, G.B.M.; Jin, R.; Li, X.; Wang, J.F. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. Int. J. Geogr. Inf. Sci. 2015, 29, 92–110. [Google Scholar] [CrossRef]
- Rajib, M.A.; Merwade, V.; Yu, Z.Q. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.R.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and Evaluation of a Frequency Domain Reflectometry Sensor for Real-Time Soil Moisture Monitoring. Vadose Zone J. 2015, 14, vzj2014-08. [Google Scholar] [CrossRef]
- Kurtz, W.; He, G.W.; Kollet, S.J.; Maxwell, R.M.; Vereecken, H.; Franssen, H.J.H. TerrSysMP-PDAF version 1.0): A modular high-performance data assimilation framework for an integrated land surface-subsurface model. Geosci. Model Dev. 2016, 9, 1341–1360. [Google Scholar] [CrossRef]
- Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D. Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev. 2002, 130, 103–114. [Google Scholar] [CrossRef]
- Nerger, L.; Hiller, W.; Schröter, J. A comparison of error subspace Kalman filters. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2005, 57, 715–735. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Song, M.; Yang, Q.; Xu, S. Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. J. Clim. 2017, 30, 8429–8446. [Google Scholar] [CrossRef]
- Shu, Q.; Qiao, F.; Liu, J.; Song, Z.; Chen, Z.; Zhao, J.; Yin, X.; Song, Y. Arctic sea ice concentration and thickness data assimilation in the FIO-ESM climate forecast system. Acta Oceanol. Sin. 2021, 40, 65–75. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, Y.; Wan, L. The choice of the optimal parameters in a Local Error Subspace Transform Kalman Filter. Mar. Forecast. 2020, 37, 42–51. [Google Scholar]
- Sobash, R.A.; Stensrud, D.J. The impact of covariance localization for radar data on EnKF analyses of a developing MCS: Observing system simulation experiments. Mon. Weather Rev. 2013, 141, 3691–3709. [Google Scholar] [CrossRef]
- Maldonado, P.; Ruiz, J.; Saulo, C. Parameter Sensitivity of the WRF–LETKF System for Assimilation of Radar Observations: Imperfect-Model Observing System Simulation Experiments. Weather Forecast. 2020, 35, 1345–1362. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. Isprs J. Photogramm. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Batjes, N.H.; Dijkshoorn, J.A.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarella, L.; et al. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; Laxenburg, Austria, 2012. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.P.; Li, X.H.; Luo, W.M.; Ma, M.G.; Guo, J.W.; Kang, J.; Zhu, Z.L.; Zhao, S.J. A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Jian, K.; Xin, L.; Mingguo, M. HiWATER: WATERNET observation dataset in the upper reaches of the Heihe River Basin (2014). Heihe Plan Sci. Data Cent. 2015, 10. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.; Luo, W.; Li, X.; Guo, J.; Ma, M.; Kang, J.; Zhang, Y. Introduction of Eco-hydrological Wireless Sensor Network in the Heihe River Basin. Adv. Earth Sci. 2012, 27, 993–1005. [Google Scholar]
- Nerger, L.; Hiller, W. Software for ensemble-based data assimilation systems-Implementation strategies and scalability. Comput. Geosci. 2013, 55, 110–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.L.; Cao, Y.P.; Huang, C.L. Development and Evaluation of a HRU-based Gridded Approach in SWAT Model for Watershed-scale Hydrological Modelling. Environ. Model Softw. 2016, Submitted. [Google Scholar]
- Nicolai-Shaw, N.; Hirschi, M.; Mittelbach, H.; Seneviratne, S.I. Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data. J. Geophys. Res. Atmos. 2015, 120, 9955–9964. [Google Scholar] [CrossRef]
- Nerger, L. On Serial Observation Processing in Localized Ensemble Kalman Filters. Mon. Weather Rev. 2015, 143, 1554–1567. [Google Scholar] [CrossRef]
- Nerger, L.; Janjić, T.; Schröter, J.; Hiller, W. A regulated localization scheme for ensemble-based Kalman filters. Q. J. R. Meteorol. Soc. 2012, 138, 802–812. [Google Scholar] [CrossRef]
- Zhang, D.; Madsen, H.; Ridler, M.E.; Kidmose, J.; Jensen, K.H.; Refsgaard, J.C. Multivariate hydrological data assimilation of soil moisture and groundwater head. Hydrol. Earth Syst. Sci. 2016, 20, 4341–4357. [Google Scholar] [CrossRef]
- Han, X.; Li, X.; Rigon, R.; Jin, R.; Endrizzi, S. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization. PLoS ONE 2015, 10, e0116435. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cong, Z.; Yang, D. Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sens. 2023, 15, 1852. [Google Scholar] [CrossRef]
- Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F. Improving parameter and state estimation of a hydrological model with the ensemble square root filter. Adv. Water Resour. 2021, 147, 103813. [Google Scholar] [CrossRef]
- Li, Y.; Ryu, D.; Western, A.W.; Wang, Q.J. Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags. Water Resour. Res. 2013, 49, 1887–1900. [Google Scholar] [CrossRef]
- Kang, J.-S.; Kalnay, E.; Liu, J.; Fung, I.; Miyoshi, T.; Ide, K. “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res. Atmos. 2011, 116, D09110. [Google Scholar] [CrossRef]
- Tang, Q.; Mu, L.; Goessling, H.F.; Semmler, T.; Nerger, L. Strongly Coupled Data Assimilation of Ocean Observations Into an Ocean-Atmosphere Model. Geophys. Res. Lett. 2021, 48, e2021GL094941. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Liu, J.; Xu, S. Seasonal Arctic Sea Ice Prediction Using a Newly Developed Fully Coupled Regional Model With the Assimilation of Satellite Sea Ice Observations. J. Adv. Model Earth Syst. 2020, 12, e2019MS001938. [Google Scholar] [CrossRef]
- Rasmussen, J.; Madsen, H.; Jensen, K.H.; Refsgaard, J.C. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: Evaluating the effect of ensemble size and localization on filter performance. Hydrol. Earth Syst. Sci. 2015, 19, 2999–3013. [Google Scholar] [CrossRef]
- Gharamti, M.E.; Hoteit, I.; Valstar, J. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering. Adv. Water Resour. 2013, 60, 75–88. [Google Scholar] [CrossRef]
- Nino-Ruiz, E.D.; Morales-Retat, L.E. A Tabu Search implementation for adaptive localization in ensemble-based methods. Soft Comput. 2019, 23, 5519–5535. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, D.; Wang, Y.; Chang, M. Differential evolution algorithm-based multiple-factor optimization methods for data assimilation. Intell. Data Anal. 2021, 25, 1473–1486. [Google Scholar] [CrossRef]
- Huang, C.; Chen, W.; Li, Y.; Shen, H.; Li, X. Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. For. Meteorol. 2016, 230, 142–156. [Google Scholar] [CrossRef]
- Seo, E.; Lee, M.-I.; Reichle, R.H. Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ. 2021, 253, 112222. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Atlas, R. Future Observing System Simulation Experiments. Bull. Am. Meteorol. Soc. 2016, 97, 1601–1616. [Google Scholar] [CrossRef]
- Waller, J.A.; García-Pintado, J.; Mason, D.C.; Dance, S.L.; Nichols, N.K. Technical note: Assessment of observation quality for data assimilation in flood models. Hydrol. Earth Syst. Sci. 2018, 22, 3983–3992. [Google Scholar] [CrossRef]
- Bauser, H.H.; Berg, D.; Klein, O.; Roth, K. Inflation method for ensemble Kalman filter in soil hydrology. Hydrol. Earth Syst. Sci. 2018, 22, 4921–4934. [Google Scholar] [CrossRef]
- Duc, L.; Saito, K.; Hotta, D. Analysis and design of covariance inflation methods using inflation functions. Part 1: Theoretical framework. Q. J. R. Meteorol. Soc. 2020, 146, 3638–3660. [Google Scholar] [CrossRef]
- Kirchgessner, P.; Toedter, J.; Ahrens, B.; Nerger, L. The smoother extension of the nonlinear ensemble transform filter. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2017, 69, 1327766. [Google Scholar] [CrossRef]
- Chen, W.; Shen, H.; Huang, C.; Li, X. Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST. Remote Sens. 2017, 9, 273. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. Ensemble smoother with multiple data assimilation. Comput. Geosci. 2013, 55, 3–15. [Google Scholar] [CrossRef]
- Dong, R.; Leng, H.; Zhao, C.; Song, J.; Zhao, J.; Cao, X. A hybrid data assimilation system based on machine learning. Front. Earth Sci. 2023, 10, 1012165. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Liu, S.; Xu, T.; Chen, F.; Li, Z.; Zhang, Z.; Liu, R.; Song, L.; Xu, Z.; et al. Improving regional climate simulations based on a hybrid data assimilation and machine learning method. Hydrol. Earth Syst. Sci. 2023, 27, 1583–1606. [Google Scholar] [CrossRef]
- Dong, J.Z.; Steele-Dunne, S.C.; Ochsner, T.E.; van de Giesen, N. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resour. Res. 2016, 52, 4280–4300. [Google Scholar] [CrossRef]
- Doll, P.; Douville, H.; Guntner, A.; Muller Schmied, H.; Wada, Y. Modelling Freshwater Resources at the Global Scale: Challenges and Prospects. Surv. Geophys. 2016, 37, 195–221. [Google Scholar] [CrossRef]
- Chen, W.J.; Huang, C.L.; Yang, Z.L.; Zhang, Y. Retrieving Accurate Soil Moisture over the Tibetan Plateau Using Multisource Remote Sensing Data Assimilation with Simultaneous State and Parameter Estimations. J. Hydrometeorol. 2021, 22, 2751–2766. [Google Scholar] [CrossRef]
Name | Spatial Resolution | Sources |
---|---|---|
DEM | 90 m | SRTM (https://www.earthdata.nasa.gov/sensors/srtm/ (accessed on 1 January 2023)) |
Soil type map | 1 km | HWSD v1.2 (https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 1 January 2023)) |
Land use type | 500 m | MCD12Q1 (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1 (accessed on 1 January 2023)) |
AMS | - | HiWATER (http://poles.tpdc.ac.cn/en/ (accessed on 1 January 2023)) |
Parameter Name | Description | Level |
---|---|---|
SURLAG | Surface runoff lag time (days) | Basin |
ESCO | Soil evaporation compensation factor | Basin |
CH_K2 | Effective hydraulic conductivity of the main channel alluvium (mm/h) | Subbasin |
CH_N2 | Manning’s “n” value for the main channel | Subbasin |
ALPHA_BF | Base flow alpha factor (days) | Grid cell |
CN2 | Initial SCS-CN II value | Grid cell |
SOL_AWC | Available water capacity (mm H2O/mm soil) | Grid cell |
SOL_K | Saturated hydraulic conductivity (mm/h) | Grid cell |
SFTMP | Snowfall temperature (°C) | Grid cell |
Observation Standard Deviation Error | Observation Search Radiuses | ||||||
---|---|---|---|---|---|---|---|
0 km | 5 km | 10 km | 20 km | 40 km | 50 km | ||
0.01 m3/m3 | Min | −0.012 | −0.014 | −0.021 | −0.024 | −0.024 | −0.026 |
Max | 0.092 | 0.092 | 0.093 | 0.121 | 0.091 | 0.108 | |
Mean | 0.002 | 0.003 | 0.004 | 0.006 | 0.006 | 0.0054 | |
Std | 0.003 | 0.005 | 0.007 | 0.009 | 0.009 | 0.009 | |
0.03 m3/m3 | Min | −0.013 | −0.016 | −0.023 | −0.026 | −0.026 | −0.028 |
Max | 0.09 | 0.09 | 0.091 | 0.119 | 0.089 | 0.106 | |
Mean | 0 | 0.001 | 0.002 | 0.004 | 0.004 | 0.004 | |
Std | 0.003 | 0.005 | 0.007 | 0.01 | 0.01 | 0.01 | |
0.05 m3/m3 | Min | −0.016 | −0.019 | −0.026 | −0.029 | −0.029 | −0.031 |
Max | 0.077 | 0.086 | 0.086 | 0.114 | 0.083 | 0.102 | |
Mean | 0 | 0.0002 | 0.001 | 0.001 | 0.001 | 0.0004 | |
Std | 0.003 | 0.006 | 0.008 | 0.01 | 0.011 | 0.011 |
Observation Standard Error (m3/m3) | Pbias (%) | RMSE (m3/m3) | CPU Time (Second) | The Number of Soil Moisture Gauges | |
---|---|---|---|---|---|
Open-loop | 24.87 | 0.025 | 12.105 | ||
LESTKF | 0.01 | 20.29 | 0.019 | 19.105 | 32 |
0.03 | 21.36 | 0.021 | 19.105 | 32 | |
0.05 | 22.43 | 0.024 | 19.105 | 32 | |
EnKF | 0.01 | 24.87 | 0.025 | 143.356 | 32 |
0.03 | 24.87 | 0.025 | 143.356 | 32 | |
0.05 | 24.87 | 0.025 | 143.356 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hou, J.; Huang, C. Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN. Sensors 2024, 24, 35. https://doi.org/10.3390/s24010035
Zhang Y, Hou J, Huang C. Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN. Sensors. 2024; 24(1):35. https://doi.org/10.3390/s24010035
Chicago/Turabian StyleZhang, Ying, Jinliang Hou, and Chunlin Huang. 2024. "Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN" Sensors 24, no. 1: 35. https://doi.org/10.3390/s24010035
APA StyleZhang, Y., Hou, J., & Huang, C. (2024). Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN. Sensors, 24(1), 35. https://doi.org/10.3390/s24010035