Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS
Abstract
:1. Introduction
2. Vibration Parameter Detection
2.1. Influence of Vibration
2.2. Principle of Detection Method
2.3. Influence of Image Motion
3. Degraded Image Restoration
3.1. Method of PSF Discretization
3.2. Degraded Image Restoration of Rolling-Shutter CMOS
4. Experiment
4.1. Platform of Vibration Detection
4.2. Experiment of Vibration Detection and Result Analysis
4.3. Experiment of Image Restoration and Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaman, I.U.; Boyraz, O. Impact of receiver architecture on small satellite optical link in the presence of pointing jitter. Appl. Opt. 2020, 59, 10177–10184. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, L.; Ling, K.; Yao, Z. Study on the Influence of Random Vibration of Space-Based Payload on Area-Array Camera Frame-by-Frame Imaging. Photonics 2022, 9, 455. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.S.; Wei, L.; Hu, Z.Q. Study on microvibration effect of an optical satellite based on the imaging absence method. Opt. Eng. 2021, 60, 013107. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Nie, K.; Gao, J. Digital domain dynamic path accumulation method to compensate for image vibration distortion for CMOS-time-delay-integration image sensor. Opt. Eng. 2020, 59, 103101. [Google Scholar] [CrossRef]
- KIM, S.; YOUK, Y. Suppressing effects of micro-vibration for MTF measurement of high-resolution electro-optical satellite payload in an optical alignment ground facility. Opt. Express 2023, 31, 4942–4953. [Google Scholar] [CrossRef]
- Dial, G.; Bowen, H.; Gerlach, F.; Grodecki, J.; Oleszczuk, R. IKONOS satellite, imagery, and products. Remote Sens. Environ. 2003, 88, 23–36. [Google Scholar] [CrossRef]
- Aguilar, M.A.; del Mar Saldana, M.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Wang, M.; Fan, C.; Pan, J.; Jin, S.; Chang, X. Image jitter detection and compensation using a high-frequency angular displacement method for Yaogan-26 remote sensing satellite—ScienceDirect. ISPRS J. Photogramm. Remote Sens. 2017, 130, 32–43. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Jia, J.; Wu, J.; Shu, R.; Zhang, L.; Wang, J. Angular micro-vibration of the Micius satellite measured by an optical sensor and the method for its suppression. Appl. Opt. 2021, 60, 1881–1887. [Google Scholar] [CrossRef]
- Yue, R.; Wang, H.; Jin, T.; Gao, Y.; Sun, X.; Yan, T.; Zang, J.; Yin, K.; Wang, S. Image Motion Measurement and Image Restoration System Based on an Inertial Reference Laser. Sensors 2021, 21, 3309. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, M.J.; Hou, P. Determination of satellite structural modes of vibration using machine vision. Opt. Eng. 2020, 59, 014101. [Google Scholar] [CrossRef]
- Park, Y.-H.; Kwon, S.-C.; Koo, K.-R.; Oh, H.-U. High Damping Passive Launch Vibration Isolation System Using Superelastic SMA with Multilayered Viscous Lamina. Aerospace 2021, 8, 201. [Google Scholar] [CrossRef]
- Yitzhaky, Y.; Boshusha, G.; Levi, Y.; Kopeika, N.S. Restoration of an image degraded by vibrations using only a single frame. Opt. Eng. 2000, 39, 2083–2091. [Google Scholar] [CrossRef]
- Stern, A.; Kempner, E.; Shukrun, A.; Kopeika, N.S. Restoration and resolution enhancement of a single image from a vibration-distorted image sequence. Opt. Eng. 2000, 39, 2451–2457. [Google Scholar] [CrossRef]
- Stiller, C.; Konrad, J. Estimating motion in image sequences. IEEE Signal Process. Mag. 1999, 16, 70–91. [Google Scholar] [CrossRef]
- Timoner, S.J.; Freeman, D.M. Multi-Image Gradient-Based Algorithms for Motion Estimation. Opt. Eng. 2001, 40, 2003–2006. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, X.; Xue, X.; Han, C.; Hu, C.; Sun, X. Vibration parameter detection of space camera by taking advantage of CMOS self-correlation Imaging of plane array of roller shutter. Opt. Precis. Eng. 2016, 24, 1474–1481. [Google Scholar]
- Zhu, Y.; Yang, T.; Wang, M.; Hong, H.; Zhang, Y.; Wang, L.; Rao, Q. Jitter Detection Method Based on Sequence CMOS Images Captured by Rolling Shutter Mode for High-Resolution Remote Sensing Satellite. Remote Sens. 2022, 14, 342. [Google Scholar] [CrossRef]
- Hochman, G.; Yitzhaky, Y.; Kopeika, N.S.; Lauber, Y.; Citroen, M.; Stern, A. Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations. Appl. Opt. 2004, 43, 4345–4354. [Google Scholar] [CrossRef]
- Liu, H.; Han, C.; Li, X.; Jiang, X.; Sun, X.; Fu, Y. Vibration parameter measurement of TDICCD space camera with mechanical assembly. Opt. Precis. Eng. 2015, 23, 720–737. [Google Scholar]
- Zhu, Y.; Wang, M.; Cheng, Y.; He, L.; Xue, L. An Improved Jitter Detection Method Based on Parallax Observation of Multispectral Sensors for Gaofen-1 02/03/04 Satellites. Remote Sens. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ma, H.; Jiang, Z.; Yan, D. Jitter detection based on parallax observations and attitude data for Chinese Heavenly Palace-1 satellite. Opt. Express 2019, 27, 1099–1123. [Google Scholar] [CrossRef]
- He, L.; Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Fast image restoration method based on coded exposure and vibration detection. J. Opt. Eng. 2015, 54, 103107. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, F.; Sun, T.; You, Z. Variable Angular Rate Measurement for a Spacecraft Based on the Rolling Shutter Mode of a Star Tracker. Electronics 2023, 12, 1875. [Google Scholar] [CrossRef]
- Wolberg, G.; Loce, R. Restoration of images scanned in the presence of vibrations. J. Electron. Imaging 1996, 5, 50–61. [Google Scholar]
- Wu, J.; Zheng, Z.; Feng, H.; Xu, Z.; Qi, L.; Chen, Y. Restoration of TDI camera images with motion distortion and blur. Opt. Laser Technol. 2010, 42, 1198–1203. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D. Mechanical and Electronic Video Stabilization Strategy of Mortars with Trajectory Correction Fuze Based on Infrared Image Sensor. Sensors 2020, 20, 2461. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.; Huang, Z.; Fu, X. An Epipolar HS-NCC Flow Algorithm for DSM Generation Using GaoFen-3 Stereo SAR Images. Remote Sens. 2023, 15, 129. [Google Scholar] [CrossRef]
Vibration Direction | Frequency (Hz) | Period (ms) | Amplitude (pixel) |
---|---|---|---|
Horizontal | 50 | 20 | 3.1 |
Vertical | 30 | 33.33 | 5.2 |
Vibration Direction | Input Vibration Parameters | Detected Vibration Parameters | Result of Contrast | ||||
---|---|---|---|---|---|---|---|
Period (ms) | Amplitude (pixel) | Period (ms) | Amplitude (pixel) | Phase (π) | Relative Accuracy of Period (%) | Relative Accuracy of Amplitude (%) | |
Horizontal | 20 | 3.1 | 20.048 | 3.147 | 0.653 | 0.242 | 1.526 |
Vertical | 33.33 | 5.2 | 33.280 | 5.195 | 1.234 | 0.161 | 0.096 |
Vibration Direction | Input Vibration Parameters | Detected Vibration Parameters | Result of Contrast | ||||
---|---|---|---|---|---|---|---|
Period (ms) | Amplitude (pixel) | Period (ms) | Amplitude (pixel) | Phase (π) | Relative Accuracy of Period (%) | Relative Accuracy of Amplitude (%) | |
Horizontal | 20 | 3.1 | 19.890 | 3.084 | 0.638 | 0.519 | 0.551 |
Vertical | 33.33 | 5.2 | 33.122 | 5.211 | 1.227 | 0.218 | 0.635 |
Scene Target Type | Evaluation Parameters | Degraded Image | Restored Image | Improved Effect (%) | |||
---|---|---|---|---|---|---|---|
Frame p | Frame p + 1 | Frame p | Frame p + 1 | Frame p | Frame p + 1 | ||
ISO 12233 | PSNR | 33.915 | 34.068 | 40.525 | 40.817 | 19.49 | 19.81 |
SSIM | 0.9286 | 0.9338 | 0.9971 | 0.9978 | 7.37 | 6.85 | |
MTF(Horizontal) | 0.0459 | 0.1472 | 0.0805 | 0.1779 | 75.38 | 20.86 | |
MTF(Vertical) | 0.1035 | 0.1009 | 0.1477 | 0.1443 | 42.71 | 43.01 | |
In-orbit simulation | PSNR | 29.563 | 29.602 | 38.324 | 38.682 | 29.64 | 30.68 |
SSIM | 0.8782 | 0.8868 | 0.9963 | 0.9965 | 13.45 | 12.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lv, H.; Han, C.; Zhao, Y. Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS. Sensors 2023, 23, 5953. https://doi.org/10.3390/s23135953
Liu H, Lv H, Han C, Zhao Y. Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS. Sensors. 2023; 23(13):5953. https://doi.org/10.3390/s23135953
Chicago/Turabian StyleLiu, Hailong, Hengyi Lv, Chengshan Han, and Yuchen Zhao. 2023. "Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS" Sensors 23, no. 13: 5953. https://doi.org/10.3390/s23135953
APA StyleLiu, H., Lv, H., Han, C., & Zhao, Y. (2023). Vibration Detection and Degraded Image Restoration of Space Camera Based on Correlation Imaging of Rolling-Shutter CMOS. Sensors, 23(13), 5953. https://doi.org/10.3390/s23135953