Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Recording and Ground-Truth Estimation
2.2. Depth-Image Calculation
2.3. Instance Segmentation
2.4. Volume and Leaf-Area Estimation
- First, the depth information is read out for each segmented leaf (Figure 7a). An M-estimator sample consensus algorithm (MSAC), which is a version of the random sample consensus (RANSAC) algorithm, is used to remove outliers and errors in the depth image (Figure 7b). For this purpose, the MSAC algorithm estimates a plane into the point cloud. Points that fall outside of a tolerance range to this plane are removed [45].
- 2.
- A plane is then fitted to the points using a multiple linear regression (Figure 8). The plane reflects the orientation and the further course of the leaf up to the leaf-attachment point.
- 3.
- By repeating the first two steps for each leaf of a plant, one plane per leaf is calculated (Figure 9a). These planes create a multitude of three-dimensional intersections (Figure 9b). To determine the three-dimensional leaf-attachment point (p), the x, y, and z coordinates of the intersection points in the segmented plant area are averaged. It is assumed that the point where most of the planes converge is the center of the stem where the leaves are attached.
2.5. Software Implementation and Dataset Used
3. Results
3.1. Cabbage Volume
3.2. Leaf-Area Calculation
4. Discussion
4.1. Experimental Setup
4.2. Depth Image Calculation
4.3. Crop Volume Calculation
4.4. Leaf-Area Calculation
5. Conclusions
- With this method, the previous destructive and time-consuming steps of manual measurements can be carried out significantly faster without damaging the plants. It makes direct plant parameter measurement possible, thus enabling the avoidance of measurements of inaccurate indicators such as the LAI, to gain information about the plant development.
- By determining the fruit cross-section by the Mask R-CNN and assuming a spherical shape, the fruit volume can be determined with 87% accuracy over several growth stages.
- By determining the leaf-attachment point by the relative position of the leaves and the leaf end point, the leaf length can be determined. The leaf length can then be used to determine with 90.9% accuracy the total leaf area over several growth stages, including overlapping leaf areas.
- The calculation of the leaf length provides a robust possibility to implement accurate leaf-area determinations, even with deficient segmentation results.
- By capturing the depth information and segmenting individual plants, cabbages and individual leaves with a minimal sensor setup, a basis for creating a digital twin for smart farming applications is created.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barriguinha, A.; de Castro Neto, M.; Gil, A. Vineyard Yield Estimation, Prediction, and Forecasting: A Systematic Literature Review. Agronomy 2021, 11, 1789. [Google Scholar] [CrossRef]
- Duckett, T.; Pearson, S.; Blackmore, S.; Grieve, B. Agricultural Robotics: The Future of Robotic Agriculture. arXiv 2018, arXiv:1806.06762. [Google Scholar]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Mengel, K. Available nitrogen in soils and is determination by the ‘Nmin- method’ and by electroultrafiltration (EUF). Fertil. Res. 1991, 28, 251–262. [Google Scholar] [CrossRef]
- Akand, H.; Mazed, K.; Pulok, A.I.; Moonmoon, J.F.; Partho, S.G. Influence of different dose of nitrogen on the growth and yield of cabbage (Brassica oleracea var. capitate 1.). Int. J. Multidiscip. Res. Dev. 2015, 2, 11–14. [Google Scholar]
- Yin, X.; Lantinga, E.A.; Schapendonk, H.C.M.; Zhong, X. Some Quantitative Relationships between Leaf Area Index and Canopy Nitrogen Content and Distribution. Ann. Bot. 2003, 91, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Feller, C.; Fink, M.; Laber, H.; Maync, A.; Paschold, P.J.; Scharpf, H.C.; Schlaghecken, J.; Strohmeyer, K.; Weier, U.; Ziegler, J. Düngung im Freiland Gemüsebau (Fertilisation in outdoor vegetable production). Schr. Leibniz-Inst. Gemüse-Zierpflanzenbau (IGZ) 2011, 3, 199–204. [Google Scholar]
- Campillo, C.; Garcia, M.I.; Daza, D.; Prieto, M.H. Study of a Non-destructive Method for Estimating the Leaf Area Index in Vegetable Crops Using Digital Images. HortScience 2010, 45, 1459–1463. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, Q.; Wu, W.; Xia, T.; Tang, H. Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 2016, 15, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Apolo-Apolo, O.; Perez-Ruiz, M.; Martinez-Guanter, J.; Egea, G. A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials. Agronomy 2020, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Shabani, A.; Ghaffary, K.A.; Sepaskhah, A.R.; Kamgar-Haghighi, A.A. Using the artificial neural network to estimate leaf area. Sci. Hortic. 2017, 216, 103–110. [Google Scholar] [CrossRef]
- CID. 2022. Available online: https://cid-inc.com/plant-science-tools/leaf-area-measurement/ci-202-portable-laser-leaf-area-meter/ (accessed on 16 December 2022).
- Reiser, D.; Kamman, A.; Vázquez Arellano, M.; Griepentrog, H.W. Using terrestrial photogrammetry for leaf area estimation in maize under different plant growth stages. In Proceedings of the Precision Agriculture ’19: 12th European Conference on Precision Agriculture, Montpellier, France, 8–11 July 2019; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 331–337. [Google Scholar]
- Montgomery, E.G. Correlation studies in corn. Neb. Agric. Exp. Stn. Annu. Rep. 1911, 24, 108–159. [Google Scholar]
- Shi, P.; Liu, M.; Ratkowsky, D.A.; Gielis, J.; Su, J.; Yu, X.; Wang, P.; Zhang, L.; Lin, Z.; Schrader, J. Leaf area-length allometry and its implications in leaf shape evolution. Springer Nat. Trees 2019, 33, 1073–1085. [Google Scholar] [CrossRef]
- Olfati, J.A.; Peyvast, G.; Shabani, H.; Nosratie-Rad, Z. An Estimation of Individual Leaf Area in Cabbage and Broccoli Using Non-destructive Methods. J. Agric. Sci. Technol. 2010, 12, 627–632. [Google Scholar]
- Itakura, K.; Hosoi, F. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images. Sensors 2018, 18, 3576. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T. Leaf Area Estimation by Semantic Segmentation of Point Cloud of Tomato Plants. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 1381–1389. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef]
- Maheswari, P.; Raja, P.; Apolo-Apolo, O.E.; Pérez-Ruiz, M. Intelligent Fruit Yield Estimation for Orchards Using Deep Learning Based Semantic Segmentation Techniques-A Review. Front. Plant Sci. 2021, 25, 684328. [Google Scholar] [CrossRef]
- Pape, J.M.; Klukas, C. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. Environ. Sci. 2015, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Viaud, G.; Loudet, O.; Cournède, P.H. Leaf Segmentation and Tracking in Arabidopsis thaliana Combined to an Organ-Scale Plant Model for Genotypic Differentiation. Front. Plant Sci. 2017, 11, 2057. [Google Scholar] [CrossRef] [Green Version]
- Gai, J.; Tang, L.; Steward, B.L. Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J. Field Robot. 2019, 37, 35–52. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Sun, Y.; Song, L.; Jin, S. Leaf Instance Segmentation and Counting Based on Deep Object Detection and Segmentation Networks. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018; pp. 180–185. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrel, T.; Malik, J. Rich feature hierarchies for object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–789. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhammer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference in Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Vázquez-Arellano, M.; Reiser, D.; Paraforos, D.S.; Garrido-Izard, M.; Burce, M.E.C.; Griepentrog, H.W. 3-D reconstruction of maize plants using a time-of-flight camera. Comput. Electron. Agric. 2018, 145, 235–247. [Google Scholar] [CrossRef]
- Özyesil, O.; Voroninski, V.; Basri, R.; Singer, A. A survey of structure from motion. Acta Numer. 2017, 26, 305–364. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Ricauda Aimonio, D.; Tortia, C.; Mania, E.; Guidoni, S.; Gay, P. Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery. Precis. Agric. 2020, 21, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Entwicklungsstadien Mono- und Dikotyler Pflanzen—BBCH Monografie. (Developmental Stages of Mono- and Dicotyledonous Plants—BBCH Monograph); Biologische Bundesanstalt für Land und Forstwirtschaft: Berlin, Germany, 2001. [Google Scholar]
- Reiser, D.; Sehsah, E.-S.; Bumann, O.; Morhard, J.; Griepentrog, H.W. Development of an Autonomous Electric Robot Implement for Intra-Row Weeding in Vineyards. Agriculture 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Radovich, T.J.K.; Kleinhenz, M.D. Rapid Estimation of Cabbage Head Volume across a Population Varying in Head Shape: A Test of two Geometric Formulae. Hort Technol. 2004, 14, 388–391. [Google Scholar] [CrossRef]
- Lüling, N.; Reiser, D.; Griepentrog, H.W. Volume and leaf area calculation of cabbage with a neural network-based instance segmentation. In Proceedings of the Precision Agriculture ’21: 14th European Conference on Precision Agriculture, Online, 16–17 November 2021; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 719–726. [Google Scholar]
- Gene-Mola, J.; Sainz-Cortiella, R.; Rosell-Polo, J.R.; Morros, J.R.; Ruiz-Hidalgo, J.; Vilaplana, V.; Gregorio, E. Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure- from-motion photogrammetry. Data Brief 2020, 30, 105591. [Google Scholar] [CrossRef] [PubMed]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Metashape Professional, Agisoft LLC, St. Petersburg, Russia. 2021. Available online: https://www.agisoft.com (accessed on 16 December 2022).
- Abdulla, W. Mask R-CNN for Object Detection and Instance Segmentation on Keras and TensorFlow. 2019. Available online: https://github.com/matterport/Mask_RCNN (accessed on 22 November 2021).
- COCO. Detection Evaluation. 2021. Available online: http://cocodataset.org/#detection-eval (accessed on 16 December 2022).
- Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Tensorflow. 2021. Available online: https://www.tensorflow.org/install/pip (accessed on 16 December 2022).
- Keras. 2021. Available online: https://keras.io/getting_started/intro_to_keras_for_engineers/ (accessed on 16 December 2022).
- Python 3.6.0. 2021. Available online: https://www.python.org/downloads/release/python-360/ (accessed on 16 December 2022).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Keceli, A.S.; Catal, C.; Yalic, H.Y.; Temucin, H.; Tekinerdogan, B. Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 2019, 158, 20–29. [Google Scholar] [CrossRef]
- Sell, J.; O’Connor, P. The XBOX One System on a Chip and Kinect Sensor. IEEE Micro 2014, 34, 44–53. [Google Scholar] [CrossRef]
- Lueling, N.; Reiser, D.; Stana, A.; Griepentrog, H.W. Using depth information and colour space variations for improving outdoor robustness for instance segmentation of cabbage. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar] [CrossRef]
Growth Stage (BBCH) | Cabbage Head (mAP) | Whole Plant (mAP) | Leaves (mAP) |
---|---|---|---|
41 | - | 0.82 | 0.52 |
45 | 0.55 | 0.61 | 0.51 |
48 | 0.81 | 0.82 | 0.47 |
Cabbage Plant (n) | Measured Volume (m3) | Calculated Volume (m3) | Detected Volume (m3) |
---|---|---|---|
1 | 0.0018 | 0.0021 | 0.0021 |
2 | 0.0034 | 0.0037 | 0.0038 |
3 | 0.0028 | 0.0031 | 0.0034 |
4 | 0.0031 | 0.0029 | 0.0033 |
5 | 0.0032 | 0.0029 | 0.0029 |
6 | 0.0029 | 0.0031 | 0.0023 |
7 | 0.0022 | 0.0017 | 0.0015 |
8 | 0.0034 | 0.0027 | 0.0016 |
9 | 0.0036 | 0.0031 | 0.0025 |
10 | 0.0022 | 0.0018 | 0.0016 |
Mean value (m3) | 0.0029 | 0.0027 | 0.0025 |
Standard deviation (%) | 19.89 | 22.5 | 30.8 |
Mean accuracy (%) | 87.2 | 86.7 |
Cabbage Plant (n) | Measured Volume (m3) | Calculated Volume (m3) | Detected Volume (m3) |
---|---|---|---|
1 | 0.00085 | 0.00089 | 0.00091 |
2 | 0.00089 | 0.00089 | 0.00087 |
3 | 0.00055 | 0.00058 | 0.00051 |
4 | 0.00060 | 0.00081 | 0.00069 |
5 | 0.00125 | 0.00104 | 0.00129 |
6 | 0.00100 | 0.00077 | 0.00065 |
7 | 0.00108 | 0.00110 | 0.00104 |
8 | 0.00050 | 0.00048 | 0.00014 |
9 | 0.00125 | 0.00061 | 0.00054 |
10 | 0.00125 | 0.00112 | 0.00114 |
Mean value (m3) | 0.00092 | 0.00083 | 0.00078 |
Standard deviation (%) | 30.06 | 25.31 | 41.2 |
Mean accuracy (%) | 84.9 | 84.33 |
Plant | Leaves Visible Number | Measured LA vis. (m2) | Calculated (m2) | Leaves Detected number | Detected LA (m2) |
---|---|---|---|---|---|
1 | 13 | 0.57 | 0.58 | 12 | 0.51 |
2 | 15 | 0.71 | 0.73 | 13 | 0.66 |
3 | 14 | 0.67 | 0.68 | 14 | 0.68 |
4 | 16 | 0.71 | 0.89 | 16 | 0.90 |
5 | 11 | 0.60 | 0.58 | 11 | 0.59 |
6 | 15 | 0.85 | 0.65 | 13 | 0.56 |
7 | 13 | 0.62 | 0.62 | 13 | 0.63 |
8 | 15 | 0.82 | 0.74 | 13 | 0.62 |
9 | 12 | 0.61 | 0.55 | 12 | 0.54 |
10 | 15 | 0.67 | 0.59 | 11 | 0.50 |
Mean Value | 13.9 | 0.68 | 0.65 | 12.7 | 0.61 |
Standard deviation (%) | 10.8 | 12.7 | 15.12 | 11.7 | 17.7 |
Mean accuracy (%) | 90.9 | 94.1 |
Plant | Leaves Visible Number | Measured LA vis. (m2) | Calculated (m2) | Leaves Detected Number | Detected LA (m2) |
---|---|---|---|---|---|
1 | 19 | 0.70 | 0.65 | 16 | 0.54 |
2 | 18 | 0.69 | 0.61 | 17 | 0.56 |
3 | 18 | 0.65 | 0.72 | 16 | 0.70 |
4 | 17 | 0.59 | 0.68 | 14 | 0.55 |
5 | 19 | 0.79 | 0.75 | 16 | 0.72 |
6 | 22 | 0.80 | 0.80 | 17 | 0.60 |
7 | 21 | 0.88 | 0.93 | 19 | 0.82 |
8 | 17 | 0.42 | 0.49 | 13 | 0.39 |
9 | 22 | 0.91 | 0.81 | 13 | 0.48 |
10 | 21 | 0.91 | 0.80 | 21 | 0.78 |
Mean Value | 19.4 | 0.73 | 0.72 | 16.2 | 0.61 |
Standard deviation (%) | 9.56 | 20.21 | 16.24 | 14.8 | 20.95 |
Mean accuracy (%) | 90.3 | 84.9 |
Plant | Leaves Visible Number | Measured LA vis. (m2) | Calculated (m2) | Leaves Detected Number | Detected LA (m2) |
---|---|---|---|---|---|
1 | 18 | 0.18 | 0.16 | 13 | 0.09 |
2 | 18 | 0.18 | 0.18 | 15 | 0.16 |
3 | 19 | 0.21 | 0.22 | 17 | 0.20 |
4 | 17 | 0.22 | 0.24 | 15 | 0.22 |
5 | 15 | 0.23 | 0.19 | 12 | 0.22 |
6 | 17 | 0.19 | 0.17 | 14 | 0.15 |
7 | 18 | 0.23 | 0.20 | 13 | 0.19 |
8 | 19 | 0.22 | 0.25 | 15 | 0.22 |
9 | 16 | 0.15 | 0.15 | 14 | 0.16 |
10 | 14 | 0.19 | 0.18 | 14 | 0.19 |
Mean Value | 17.1 | 0.19 | 0.19 | 15.3 | 18.1 |
Standard deviation (%) | 12.5 | 9.2 | 15.9 | 10.1 | 21.4 |
Mean accuracy (%) | 91.7 | 87.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lüling, N.; Reiser, D.; Straub, J.; Stana, A.; Griepentrog, H.W. Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages. Sensors 2023, 23, 129. https://doi.org/10.3390/s23010129
Lüling N, Reiser D, Straub J, Stana A, Griepentrog HW. Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages. Sensors. 2023; 23(1):129. https://doi.org/10.3390/s23010129
Chicago/Turabian StyleLüling, Nils, David Reiser, Jonas Straub, Alexander Stana, and Hans W. Griepentrog. 2023. "Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages" Sensors 23, no. 1: 129. https://doi.org/10.3390/s23010129
APA StyleLüling, N., Reiser, D., Straub, J., Stana, A., & Griepentrog, H. W. (2023). Fruit Volume and Leaf-Area Determination of Cabbage by a Neural-Network-Based Instance Segmentation for Different Growth Stages. Sensors, 23(1), 129. https://doi.org/10.3390/s23010129