Terahertz Kerr Effect of Liquids
Abstract
:1. Introduction
2. TKE Technique Based on a Solid Medium
3. TKE Responses of Liquid Water
4. Exploration of Molecular Dynamics by TKE Spectroscopy
5. Low-Frequency Molecular Dynamics of Aqueous Solutions
5.1. TKE Response of Salt Ion Solution
5.2. TKE Responses of Ethanol-Water Mixtures
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Tan, Y.; Zhang, L.; Zhang, R.; Shalaby, M.; Zhang, C.; Zhao, Y.; Zhang, X.-C. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light Sci. Appl. 2020, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Zalden, P.; Song, L.; Wu, X.; Huang, H.; Ahr, F.; Mücke, O.D.; Reichert, J.; Thorwart, M.; Mishra, P.K.; Welsch, R. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat. Commun. 2018, 9, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampfrath, T.; Campen, R.K.; Wolf, M.; Sajadi, M. The nature of the dielectric response of methanol revealed by the terahertz Kerr effect. J. Phys. Chem. Lett. 2018, 9, 1279–1283. [Google Scholar] [CrossRef]
- Elgabarty, H.; Kampfrath, T.; Bonthuis, D.J.; Balos, V.; Kaliannan, N.K.; Loche, P.; Netz, R.R.; Wolf, M.; Kühne, T.D.; Sajadi, M. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci. Adv. 2020, 9, eaay7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajadi, M.; Wolf, M.; Kampfrath, T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat. Commun. 2017, 8, 14963. [Google Scholar] [CrossRef] [PubMed]
- Freysz, E.; Degert, J. Terahertz Kerr effect. Nat. Photon. 2010, 4, 131–132. [Google Scholar] [CrossRef]
- Bead, M.C.; Turner, G.M.; Schmuttenmaer, C.A. Size -dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy. Nano Lett. 2002, 2, 983–987. [Google Scholar] [CrossRef]
- Azad, A.K.; Zhang, W. Terahertz dielectric properties of high-resistivity single-crystal ZnO. Appl. Phys. Lett. 2006, 88, 021103. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Zhao, H.; Zhang, L.; Zhang, Y.; Zhang, C.; Weber, C.; Acharya, S.; Cunningham, B.; Gruning, M.; Liu, K. Possible phonon-induced electronic Bi-stability in VO2 for ultrafast memory at room temperature. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-Thz), Paris, France, 1–6 September 2019. [Google Scholar]
- Zhang, L.; Chen, Z.; Zhang, R.; Tan, Y.; Wu, T.; Shalaby, M.; Xie, R.; Xu, J. Direct observation of charge injection of graphene in the Graphene/WSe2 Heterostructure by optical-pump terahertz-probe spectroscopy. ACS Appl. Mater. Interfaces 2019, 11, 47501–47506. [Google Scholar] [CrossRef]
- Schmuttenmaer, C.A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 2004, 104, 1759–1779. [Google Scholar] [CrossRef]
- Huber, R.; Tauser, F.; Brodschelm, A.; Bichler, M.; Abstreiter, G.; Leitenstorfer, A. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 2001, 414, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Acharya, S.; Cunningham, B.; Gruning, M.; Zhang, L.; Zhao, H.; Tan, Y.; Zhang, Y.; Zhang, C.; Liu, K. Role of the lattice in the light-induced insulator-to-metal transition in vanadium dioxide. Phys. Rev. Res. 2020, 2, 023076. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, X.; Tao, L.; Chen, K.; Long, M.; Liu, X.; Yan, K.; Stantchev, R.I.; Pickwell-MacPherson, E.; Xu, J.-B. Graphene controlled brewster angle device for ultra broadband terahertz modulation. Nat. Commun. 2018, 9, 4909. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, P.; Sensale-Rodriguez, B. 2D materials for terahertz modulation. Adv. Opt. Mater. 2020, 8, 1900550. [Google Scholar] [CrossRef]
- Melinger, J.S.; Harsha, S.S.; Laman, N.; Grischkowsky, D. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials. Opt. Express 2010, 18, 27238–27250. [Google Scholar] [CrossRef] [PubMed]
- Ergün, S.; Sönmez, S. Terahertz technology for military applications. J. Mil. Inf. Sci. 2015, 3, 13–16. [Google Scholar] [CrossRef]
- Palka, N.; Szala, M.; Czerwinska, E. Characterization of prospective explosive materials using terahertz time-domain spectroscopy. Appl. Opt. 2016, 55, 4575–4583. [Google Scholar] [CrossRef]
- Jastrow, C.; Priebe, S.; Spitschan, B.; Hartmann, J.; Jacob, M.; Kuerner, T.; Schrader, T.; Kleine-Ostmann, T. Wireless digital data transmission at 300 GHz. Electron. Lett. 2010, 46, 661–687. [Google Scholar] [CrossRef]
- Song, H.-J.; Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Sklar, B. Digital Communications Fundamentals and Applications, 2nd ed.; Prentice Hall: Los Angeles, CA, USA, 2001. [Google Scholar]
- Narayanan, R.M.; Chuang, J. Covert communications using heterodyne correlation random noise signals. Electron. Lett. 2007, 43, 1211–1212. [Google Scholar] [CrossRef]
- Kalinin, V.I. Spectral modulation of wideband noise signals. Radioteknika Elektron. 1996, 41, 452–457. [Google Scholar]
- Woodward, R.M.; Wallace, V.P.; Pye, R.J.; Cole, B.E.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Investig. Dermatol. 2003, 120, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, A.J.; Berry, E.; Zinov’ev, N.N.; Homer-Vanniasinkam, S.; Miles, R.E.; Chamberlain, J.M.; Smith, M.A. Catalogue of human tissue optical properties at terahertz frequencies. J. Biol. Phys. 2003, 29, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarfi, M.R.; Romano, M.; Di Pietro, R.; Zeni, O.; Doria, A.; Gallerano, G.P.; Giovenale, E.; Messina, G.; Lai, A.; Campurra, G. THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys. 2003, 29, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.J.; Kim, S.-H.; Ji, Y.B.; Jeong, K.; Park, Y.; Yang, J.; Park, D.W.; Noh, S.K.; Kang, S.-G.; Huh, Y.-M. Study of freshly excised brain tissues using terahertz imaging. Biomed. Opt. Express 2014, 5, 2837–2842. [Google Scholar] [CrossRef] [Green Version]
- Joseph, C.S.; Yaroslavsky, A.N.; Neel, V.A.; Goyette, T.M.; Giles, R.H. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers. Lasers Surg. Med. 2011, 43, 457–462. [Google Scholar] [CrossRef]
- Cheon, H.; Yang, H.; Lee, S.-H.; Kim, Y.A.; Son, J.-H. Terahertz molecular resonance of cancer DNA. Sci. Rep. 2016, 6, 37103. [Google Scholar] [CrossRef] [Green Version]
- Kampfrath, T.; Wolf, M.; Sajadi, M. Anharmonic coupling between intermolecular motions of water revealed by terahertz Kerr effect. arXiv 2017. [Google Scholar] [CrossRef]
- Luzar, A.; Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 1996, 379, 55–57. [Google Scholar] [CrossRef]
- Perakis, F.; De Marco, L.; Shalit, A.; Tang, F.; Kann, Z.R.; Kuehne, T.D.; Torre, R.; Bonn, M.; Nagata, Y. Vibrational spectroscopy and dynamics of water. Chem. Rev. 2016, 116, 7590–7607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Khaliullin, R.Z.; Bovi, D.; Guidoni, L.; Kuehne, T.D. Vibrational signature of water molecules in asymmetric hydrogen bonding environments. J. Phys. Chem. Lett. 2013, 4, 3245–3250. [Google Scholar] [CrossRef]
- Khaliullin, R.Z.; Kuehne, T.D. Microscopic properties of liquid water from combined Ab initio molecular dynamics and energy decomposition studies. Phys. Chem. Chem. Phys. 2013, 15, 15746–15766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolantoni, M.; Sassi, P.; Morresi, A.; Santini, S. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized rayleigh scattering and low-frequency Raman spectroscopy. J. Chem. Phys. 2007, 127, 024504. [Google Scholar] [CrossRef]
- Bizzarri, A.R.; Wang, C.; Chen, W.; Cannistraro, S. Hydrogen bond analysis by MD simulation of copper plastocyanin at different hydration levels. Chem. Phys. 1995, 201, 463–472. [Google Scholar] [CrossRef]
- Wu, K.; Qi, C.; Zhu, Z.; Wang, C.; Song, B.; Chang, C. Terahertz wave accelerates DNA unwinding: A molecular dynamics simulation study. J. Phys. Chem. Lett. 2020, 11, 7002–7008. [Google Scholar] [CrossRef] [PubMed]
- Hartnig, C.; Koper, M.T.M. Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: A molecular dynamics study. J. Am. Chem. Soc. 2003, 125, 9840–9845. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Hynes, J.T. Acid-base proton transfer and ion pair formation in solution. In Advances in Chemical Physics; Prigogine, I., Rice, S.A., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1999; Volume 110, pp. 381–430. ISBN 978-0-471-33180-3. [Google Scholar]
- Halle, B. Protein hydration dynamics in solution: A critical survey. Philos. Trans. R. Soc. B-Biol. Sci. 2004, 359, 1207–1223. [Google Scholar] [CrossRef]
- Malardier-Jugroot, C.; Johnson, M.E.; Murarka, R.K.; Head-Gordon, T. Aqueous peptides as experimental models for hydration water dynamics near protein surfaces. Phys. Chem. Chem. Phys. 2008, 10, 4903–4908. [Google Scholar] [CrossRef] [Green Version]
- Mazur, K.; Heisler, I.A.; Meech, S.R. Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides. J. Phys. Chem. B 2010, 114, 10684–10691. [Google Scholar] [CrossRef]
- Born, B.; Weingaertner, H.; Bruendermann, E.; Havenith, M. Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. J. Am. Chem. Soc. 2009, 131, 3752–3755. [Google Scholar] [CrossRef] [PubMed]
- Modig, K.; Liepinsh, E.; Otting, G.; Halle, B. Dynamics of protein and peptide hydration. J. Am. Chem. Soc. 2004, 126, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Qvist, J.; Persson, E.; Mattea, C.; Halle, B. Time scales of water dynamics at biological interfaces: Peptides, proteins and cells. Faraday Discuss. 2009, 141, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 2013, 7, 680–690. [Google Scholar] [CrossRef]
- Tanaka, K.; Hirori, H.; Nagai, M. THz nonlinear spectroscopy of solids. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 301–312. [Google Scholar] [CrossRef]
- Hebling, J.; Yeh, K.L.; Hoffmann, M.C.; Nelson, K.A. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE J. Sel. Top. Quantum Electr. 2008, 14, 345–353. [Google Scholar] [CrossRef]
- Sajadi, M.; Wolf, M.; Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 2015, 23, 28985–28992. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, H.; Zhang, R.; Zhang, C.; Zhao, Y.; Zhang, L. Ultrafast optical pulse polarization modulation based on the terahertz-induced Kerr effect in low-density polyethylene. Opt. Express 2020, 28, 35330–35338. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Shalaby, M.; Vicario, C.; Hauri, C.P. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching. APL Phonton. 2017, 2, 036106. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Loewenstein, E. Optical-constants of far infrared materials. 3: Plastics. Appl. Opt. 1975, 14, 1335–1341. [Google Scholar] [CrossRef]
- Seren, H.R.; Keiser, G.R.; Cao, L.; Zhang, J.; Strikwerda, A.C.; Fan, K.; Metcalfe, G.D.; Wraback, M.; Zhang, X.; Averitt, R.D. Optically modulated multiband terahertz perfect absorber. Adv. Opt. Mater. 2014, 2, 1221–1226. [Google Scholar] [CrossRef]
- Chen, H.-T.; Padilla, W.J.; Zide, J.M.O.; Bank, S.R.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett. 2007, 32, 1620–1622. [Google Scholar] [CrossRef] [PubMed]
- Fujihira, M.; Inokuchi, H. Photoemission from polyethylene. Chem. Phys. Lett. 1972, 17, 554–556. [Google Scholar] [CrossRef]
- Demichelis, F.; Crovini, G.; Giorgis, F.; Pirri, C.F.; Tresso, E. Hydrogenated amorphous silicon-nitrogen alloys, a-SiNx:H-y: A wide band gap material for optoelectronic devices. J. Appl. Phys. 1996, 79, 1730–1735. [Google Scholar] [CrossRef]
- Nohira, H.; Tsai, W.; Besling, W.; Young, E.; Petry, J.; Conard, T.; Vandervorst, W.; De Gendt, S.; Heyns, M.; Maes, J. Characterization of ALCVD-Al2O3 and ZrO2 layer using X-Ray photoelectron spectroscopy. J. Non-Cryst. Solids 2002, 303, 83–87. [Google Scholar] [CrossRef]
- Vij, J.K.; Simpson, D.R.J.; Panarina, O.E. Far infrared spectroscopy of water at different temperatures: GHz to THz dielectric spectroscopy of water. J. Mol. Liq. 2004, 112, 125–135. [Google Scholar] [CrossRef]
- Torii, H. Intermolecular electron density modulations in water and their effects on the far-infrared spectral profiles at 6 THz. J. Phys. Chem. B 2011, 115, 6636–6643. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Hori, Y.; Tominaga, Y. Study on dynamic structure in water and heavy-water by low-frequency Raman-spectroscopy. J. Chem. Phys. 1992, 97, 1961–1968. [Google Scholar] [CrossRef]
- Fukasawa, T.; Sato, T.; Watanabe, J.; Hama, Y.; Kunz, W.; Buchner, R. Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys. Rev. Lett. 2005, 95, 197802. [Google Scholar] [CrossRef] [Green Version]
- Ronne, C.; Keiding, S.R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. J. Mol. Liq. 2002, 101, 199–218. [Google Scholar] [CrossRef]
- Penkov, N.; Shvirst, N.; Yashin, V.; Fesenko, E.; Fesenko, E. Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B 2015, 119, 12664–12670. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, J.; Ahmed, S.; Hamm, P. Two-dimensional Raman-terahertz spectroscopy of water. Proc. Natl. Acad. Sci. USA 2013, 110, 20402–20407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soper, A.K. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 2000, 258, 121–137. [Google Scholar] [CrossRef]
- Laage, D. Reinterpretation of the liquid water quasi-elastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism. J. Phys. Chem. B 2009, 113, 2684–2687. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Bellissentfunel, M.; Chen, S.; Dianoux, A. Experimental-determination of the nature of diffusive motions of water-molecules at low-temperatures. Phys. Rev. A 1985, 31, 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.; Farrow, R. The subpicosecond Kerr effect in Cs2. Chem. Phys. Lett. 1983, 98, 273–276. [Google Scholar] [CrossRef]
- Waldeck, D.; Cross, A.; Mcdonald, D.; Fleming, G. Picosecond pulse induced transient molecular birefringence and dichroism. J. Chem. Phys. 1981, 74, 3381–3387. [Google Scholar] [CrossRef]
- Fecko, C.J.; Eaves, J.D.; Tokmakoff, A. Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy. J. Chem. Phys. 2002, 117, 1139–1154. [Google Scholar] [CrossRef]
- Turton, D.A.; Wynne, K. Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr effect spectroscopy. J. Chem. Phys. 2008, 128, 154516. [Google Scholar] [CrossRef]
- Palese, S.; Schilling, L.; Miller, R.; Staver, P.; Lotshaw, W. Femtosecond optical Kerr-effect studies of water. J. Phys. Chem. 1994, 98, 6308–6316. [Google Scholar] [CrossRef]
- Skaf, M.S.; Sonoda, M.T. Optical Kerr effect in supercooled water. Phys. Rev. Lett. 2005, 94, 137802. [Google Scholar] [CrossRef]
- Torre, R.; Bartolini, P.; Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 2004, 428, 296–299. [Google Scholar] [CrossRef] [Green Version]
- Hunt, N.T.; Kattner, L.; Shanks, R.P.; Wynne, K. The dynamics of water-protein interaction studied by ultrafast optical Kerr-effect spectroscopy. J. Am. Chem. Soc. 2007, 129, 3168–3172. [Google Scholar] [CrossRef] [PubMed]
- Bodrov, S.; Sergeev, Y.; Murzanev, A.; Stepanov, A. Terahertz induced optical birefringence in polar and nonpolar liquids. J. Chem. Phys. 2017, 147, 084507. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Pasti, A.; Fernández-Terán, R.J.; Ciardi, G.; Shalit, A.; Hamm, P. Aqueous solvation from the water perspective. J. Chem. Phys. 2018, 148, 234505. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Savolainen, J.; Hamm, P. The effect of the Gouy phase in optical-pump-THz-probe spectroscopy. Opt. Express 2014, 22, 4256–4266. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.C.; Brandt, N.C.; Hwang, H.Y.; Yeh, K.L.; Nelson, K.A. Terahertz Kerr effect. Appl. Phys. Lett. 2009, 95, 231105. [Google Scholar] [CrossRef] [Green Version]
- Rϕnne, C.; Thrane, L.; Åstrand, P.O.; Wallqvist, A.; Mikkelsen, K.V.; Keiding, S.R. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J. Chem. Phys. 1997, 107, 5319–5331. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Klarskov, P.; Jepsen, P.U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 425–431. [Google Scholar] [CrossRef]
- Kampfrath, T.; Wolf, M.; Sajadi, M. The sign of the polarizability anisotropy of polar molecules is obtained from the terahertz Kerr effect. Chem. Phys. Lett. 2018, 692, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Tan, Y.; Zhang, R.; Zhao, Y.; Zhang, C.L.; Zhang, L.L. Anion-water hydrogen bond vibration revealed by the terahertz Kerr effect. Opt. Lett. 2021, 46, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.D. Sticky ions in biological systems. Proc. Natl. Acad. Sci. USA 1995, 92, 5553–5557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tan, Y.; Wu, T.; Zhang, R.; Zhao, Y.J.; Zhang, C.L.; Zhang, L.L. Strong anisotropy in aqueous salt solutions revealed by terahertz-induced Kerr effect. Opt. Commun. 2021, 497, 127192. [Google Scholar] [CrossRef]
- Zasetsky, A.Y.; Lileev, A.S.; Lyashchenko, A.K. Molecular dynamic simulations of terahertz spectra for water-methanol mixtures. Mol. Phys. 2010, 108, 649–656. [Google Scholar] [CrossRef]
- Li, R.; Agostino, C.D.; McGregor, J.; Mantle, M.D.; Zeitler, J.A.; Gladden, L.F. Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 2014, 118, 10156–10166. [Google Scholar] [CrossRef] [PubMed]
- Sani, E.; Dell’Oro, A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 2016, 60, 137–141. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, Y.; Zhang, R.; Zhao, Y.; Zhang, C.L.; Zhang, X.C.; Zhang, L.L. Molecular dynamic investigation of ethanol-water mixture by terahertz-induced Kerr effect. Opt. Express 2021, 29, 36379. [Google Scholar] [CrossRef]
- Yuko, A.; Yasunori, T. Low-frequency Raman study of ethanol-water mixture. Chem. Phys. Lett. 2000, 320, 703706. [Google Scholar] [CrossRef]
- Egashira, K.; Nishi, N. Low-frequency raman spectroscopy of ethanol-water binary solution: Evidence for self-association of solute and solvent molecules. J. Phys. Chem. B 1998, 102, 4054–4057. [Google Scholar] [CrossRef]
Water Film Thickness d (μm) | Incident Number of THz Photons | The Exit Number of THz Photons |
---|---|---|
500 | 1 | |
100 | 9 | 1 |
50 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xiao, W.; Zhang, C.; Zhang, L. Terahertz Kerr Effect of Liquids. Sensors 2022, 22, 9424. https://doi.org/10.3390/s22239424
Zhang M, Xiao W, Zhang C, Zhang L. Terahertz Kerr Effect of Liquids. Sensors. 2022; 22(23):9424. https://doi.org/10.3390/s22239424
Chicago/Turabian StyleZhang, Minghao, Wen Xiao, Cunlin Zhang, and Liangliang Zhang. 2022. "Terahertz Kerr Effect of Liquids" Sensors 22, no. 23: 9424. https://doi.org/10.3390/s22239424
APA StyleZhang, M., Xiao, W., Zhang, C., & Zhang, L. (2022). Terahertz Kerr Effect of Liquids. Sensors, 22(23), 9424. https://doi.org/10.3390/s22239424