Power Line Communication and Sensing Using Time Series Forecasting
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.2.1. Legacy Cable Diagnostics
1.2.2. PLC Cable Diagnostics Solution
1.2.3. Time-Series Prediction for Diagnostics
1.2.4. Cable Diagnostics Solution Using Other Techniques
1.2.5. Diagnostics Solution for Other Systems
1.3. Contributions
1.4. Paper Organization
2. Time-Series Forecasting
2.1. Time-Series Data for Cable Anomaly Detection
2.2. ARIMA
2.3. Least-Square Boosting
2.4. Feed-Forward Neural Network and Long-Short-Term-Memory
3. Cable Anomaly Detection
3.1. Data Preparation
3.2. Detection Using Squared Mahalanobis Distance
4. Design and Case Studies
4.1. Data Sets
In-Field Data
4.2. Time Series Prediction for Studied Data Sets
4.2.1. ARIMA
4.2.2. L2Boost
4.2.3. ANN
4.2.4. Results
4.3. Anomaly Detection for Studied Data Sets
5. Supplementary Evaluation
5.1. Robustness Test
5.2. Incipient Fault
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28. [Google Scholar] [CrossRef]
- US Department of Energy. The Smart Grid. Available online: https://www.smartgrid.gov/the_smart_grid/smart_grid.html (accessed on 8 July 2022).
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tuts. 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Wild, T.; Braun, V.; Viswanathan, H. Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access 2021, 9, 30845–30857. [Google Scholar] [CrossRef]
- Huo, Y.; Prasad, G.; Atanackovic, L.; Lampe, L.; Leung, V.C.M. Cable Diagnostics With Power Line Modems for Smart Grid Monitoring. IEEE Access 2019, 7, 60206–60220. [Google Scholar] [CrossRef]
- Prasad, G.; Huo, Y.; Lampe, L.; Mengi, A.; Leung, V.C.M. Fault Diagnostics with Legacy Power Line Modems. In Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Prague, Czech Republic, 3–5 April 2019; pp. 1–6. [Google Scholar]
- Lehmann, A.M.; Raab, K.; Gruber, F.; Fischer, E.; Müller, R.; Huber, J.B. A diagnostic method for power line networks by channel estimation of PLC devices. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, Australia, 6–9 November 2016; pp. 320–325. [Google Scholar] [CrossRef]
- Passerini, F.; Tonello, A.M. Full duplex power line communication modems for network sensing. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden, Germany, 23–27 October 2017; pp. 1–5. [Google Scholar]
- Passerini, F.; Tonello, A.M. Analysis of High-Frequency Impedance Measurement Techniques for Power Line Network Sensing. IEEE Sens. J. 2017, 17, 7630–7640. [Google Scholar] [CrossRef] [Green Version]
- Prasad, G.; Lampe, L. Full-duplex power line communications: Design and applications from multimedia to smart grid. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Galli, S.; Scaglione, A.; Wang, Z. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid. Proc. IEEE 2011, 99, 998–1027. [Google Scholar] [CrossRef] [Green Version]
- Itron. Itron OpenWay Riva Technology Overview. Available online: https://developer.itron.com/riva-overview (accessed on 2 June 2022).
- Mengi, A.; Ponzelar, S.; Koch, M. The ITU-T G.9960 broadband PLC communication concept for smartgrid applications. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden, Germany, 23–27 October 2017; pp. 492–496. [Google Scholar]
- Wang, J.; Stone, P.; Shin, Y.J.; Dougal, R. Application of joint time–frequency domain reflectometry for electric power cable diagnostics. IET Signal Process. 2010, 4, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Dubickas, V. On-Line Time Domain Reflectometry Diagnostics of Medium Voltage XLPE Power Cables. Ph.D. Thesis, KTH, Stockholm, Sweden, 2006. [Google Scholar]
- Gill, P. Electrical Power Equipment Maintenance and Testing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.J. Fault diagnosis for electrical systems and power networks: A review. IEEE Sens. J. 2020, 21, 888–906. [Google Scholar] [CrossRef]
- Farajollahi, M.; Shahsavari, A.; Stewart, E.M.; Mohsenian-Rad, H. Locating the source of events in power distribution systems using micro-PMU data. IEEE Trans. Power Syst. 2018, 33, 6343–6354. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Prasad, G.; Lampe, L.; Leung, V.C.M. Cable Health Monitoring in Distribution Networks using Power Line Communications. In Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; pp. 1–6. [Google Scholar]
- Alam, M.N.; Bhuiyan, R.H.; Dougal, R.A.; Ali, M. Design and application of surface wave sensors for nonintrusive power line fault detection. IEEE Sens. J. 2012, 13, 339–347. [Google Scholar] [CrossRef]
- Huo, Y.; Prasad, G.; Lampe, L.; Leung, C.V. Smart-grid monitoring: Enhanced machine learning for cable diagnostics. In Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Prague, Czech Republic, 3–5 April 2019; pp. 1–6. [Google Scholar]
- Prasad, G.; Huo, Y.; Lampe, L.; Leung, V.C.M. Machine Learning Based Physical-Layer Intrusion Detection and Location for the Smart Grid. In Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China,, 21–23 October 2019; pp. 1–6. [Google Scholar]
- Bondorf, M.; Koch, M.; Hopfer, N.; Zdrallek, M.; Balada, C.; Ahmed, S.; Agne, S.; Dengel, A.; Karl, F.; Dietzler, U.; et al. Broadband Power Line Communication and Big-Data-Analytics for Supporting Grid Operation. In Proceedings of the ETG Congress 2021, Online, 18–19 March 2021; pp. 1–6. [Google Scholar]
- Yang, Y.; Bai, Y.; Li, C.; Yang, Y.N. Application Research of ARIMA Model in Wind Turbine Gearbox Fault Trend Prediction. In Proceedings of the IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018; pp. 520–526. [Google Scholar]
- Wang, Z.; Liu, Z.; Sun, Y.; Gao, W.; Gu, C. High Impact Low Frequency Peak Load Analysis using Extreme Value Theory. In Proceedings of the IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [Google Scholar]
- Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Syst. Appl. 2020, 140, 112896. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, I.; Adhikari, R.; Verma, G. Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput. Sci. 2015, 48, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Allende, H.; Moraga, C.; Salas, R. Artificial neural networks in time series forecasting: A comparative analysis. Kybernetika 2002, 38, 685–707. [Google Scholar]
- Lee, G.S.; Bang, S.S.; Kwon, G.Y.; Lee, Y.H.; Sohn, S.H.; Han, S.C.; Shin, Y.J. Time–Frequency-Based Condition Monitoring of 22.9-kV HTS Cable Systems: Cooling Process and Current Imbalance. IEEE Trans. Ind. Electron. 2018, 66, 8116–8125. [Google Scholar] [CrossRef]
- Bang, S.S.; Shin, Y.J. Classification of Faults in Multi-Core Cable via Time-Frequency Domain Reflectometry. IEEE Trans. Ind. Electron. 2019, 67, 4163–4171. [Google Scholar] [CrossRef]
- Kwon, G.Y.; Lee, C.K.; Lee, G.S.; Lee, Y.H.; Chang, S.J.; Jung, C.K.; Kang, J.W.; Shin, Y.J. Offline fault localization technique on HVDC submarine cable via time–frequency domain reflectometry. IEEE Trans. Power Del. 2017, 32, 1626–1635. [Google Scholar] [CrossRef]
- Lee, G.S.; Ji, G.H.; Kwon, G.Y.; Bang, S.S.; Lee, Y.H.; Sohn, S.H.; Park, K.; Shin, Y.J. Monitoring method for an unbalanced three-phase HTS cable system via time-frequency domain reflectometry. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Lee, C.K.; Shin, Y.J. Multi-core cable fault diagnosis using cluster time-frequency domain reflectometry. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- De Oliveira, L.G.; de Lima Filomeno, M.; Poor, H.V.; Ribeiro, M.V. Orthogonal chirp-division multiplexing for power line sensing via time-domain reflectometry. IEEE Sens. J. 2019, 21, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, K.; Kurniant, K.; Surbakti, T.; Pinem, S.; Subekti, M.; Minakuchi, Y.; Kudo, K. On-line reactor monitoring with neural network for RSG-GAS. In Proceedings of the ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey, 15–17 December 2005; p. 4. [Google Scholar]
- Catterson, V.M.; Rudd, S.; McArthur, S.D.; Moss, G. On-line transformer condition monitoring through diagnostics and anomaly detection. In Proceedings of the IEEE 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8–12 November 2009; pp. 1–6. [Google Scholar]
- Lin, J.; Yan, Y.; Zhang, Q.; Sheng, G.; Xie, D.; Gu, C. A Method for Anomaly Detection of State Information of Transformer Based on Association Rules and Elman Neural Network. In Proceedings of the IEEE Condition Monitoring Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Ashwini, P.; Umamaherwari, R. Wireless sensor network for condition monitoring of remote wind mill. In Proceedings of the IEEE International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 16–18 March 2017; pp. 1–7. [Google Scholar]
- Wang, K.; Qiu, X.; Guo, S.; Qi, F. Fault tolerance oriented sensors relay monitoring mechanism for overhead transmission line in smart grid. IEEE Sens. J. 2014, 15, 1982–1991. [Google Scholar] [CrossRef]
- Hagan, M.T.; Behr, S.M. The time series approach to short term load forecasting. IEEE Trans. Power Syst. 1987, 2, 785–791. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 734. [Google Scholar]
- Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short term memory networks for anomaly detection in time series. In Proceedings; Presses Universitaires de Louvain: Louvain-la-Neuve, Belgium, 2015; Volume 89, pp. 89–94. [Google Scholar]
- Schapire, R.E.; Freund, Y. Boosting: Foundations and Algorithms; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Yonge, L.; Abad, J.; Afkhamie, K.; Guerrieri, L.; Katar, S.; Lioe, H.; Pagani, P.; Riva, R.; Schneider, D.M.; Schwager, A. An overview of the HomePlug AV2 technology. J. Electr. Comput. Eng. 2013, 2013, 892628. [Google Scholar] [CrossRef]
- Prasad, G.; Lampe, L.; Shekhar, S. In-band full duplex broadband power line communications. IEEE Trans. Commun. 2016, 64, 3915–3931. [Google Scholar] [CrossRef]
- Prasad, G.; Lampe, L.; Shekhar, S. Digitally Controlled Analog Cancellation for Full Duplex Broadband Power Line Communications. IEEE Trans. Commun. 2017, 65, 4419–4432. [Google Scholar] [CrossRef]
- Lampe, L.; Tonello, A.M.; Swart, T.G. Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- O’Shea, T.J.; Clancy, T.C.; McGwier, R.W. Recurrent neural radio anomaly detection. arXiv 2016, arXiv:1611.00301. [Google Scholar]
- Cui, Y.; Bangalore, P.; Tjernberg, L.B. An Anomaly Detection Approach Using Wavelet Transform and Artificial Neural Networks for Condition Monitoring of Wind Turbines’ Gearboxes. In Proceedings of the IEEE Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7. [Google Scholar]
- Slotani, M. Tolerance regions for a multivariate normal population. Ann. Inst. Stat. Math. 1964, 16, 135–153. [Google Scholar] [CrossRef]
- Plackett, R.L. Karl Pearson and the chi-squared test. In International Statistical Review/Revue Internationale de Statistique; International Statistical Institute (ISI): Hague, The Netherlands, 1983; pp. 59–72. [Google Scholar]
- Hopfer, N. Nutzen der Breitband-Powerline-Kommunikation zur Erfassung kritischer Kabelzustände in Mittel-und Niederspannungsnetzen. Ph.D. Thesis, School of Electrical, Information and Media Engineering, University of Wuppertal, Wuppertal, Germany, 2020. [Google Scholar]
- Freund, Y.; Schapire, R. A short introduction to boosting. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Gruber, F.; Lampe, L. On PLC channel emulation via transmission line theory. In Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Austin, TX, USA, 29 March–1 April 2015; pp. 178–183. [Google Scholar] [CrossRef]
- Förstel, L.; Lampe, L. Grid diagnostics: Monitoring cable aging using power line transmission. In Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Madrid, Spain, 3–5 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Passerini, F.; Tonello, A.M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation. IEEE Access 2019, 7, 27302–27312. [Google Scholar] [CrossRef]
- Saha, S.; Aldeen, M.; Tan, C.P. Unsymmetrical fault diagnosis in transmission/distribution networks. Intl. J. Electr. Power Energy Syst. 2013, 45, 252–263. [Google Scholar] [CrossRef]
- Densley, J. Ageing mechanisms and diagnostics for power cables - an overview. IEEE Elect. Insul. Mag. 2001, 17, 14–22. [Google Scholar] [CrossRef]
- Furse, C.; Chung, Y.C.; Dangol, R.; Nielsen, M.; Mabey, G.; Woodward, R. Frequency-domain reflectometry for on-board testing of aging aircraft wiring. IEEE Trans. Electromagn. Compat. 2003, 45, 306–315. [Google Scholar] [CrossRef]
Data Set | ExpMV | ExpLV | Syn1 | Syn2 | Syn3 |
---|---|---|---|---|---|
ARIMA | |||||
ARIMA | |||||
ARIMA | |||||
ARIMA | |||||
L2Boost | |||||
L2Boost | |||||
FFNN | |||||
LSTM | |||||
Baseline |
Data Set | ExpMV | ExpLV | Syn1 | Syn2 | Syn3 |
---|---|---|---|---|---|
Group 1 | / | / | / | / | / |
Group 2 | / | / | / | / | / |
Group 3 | / | / | / | / | / |
Group 4 | / | / | / | / | / |
Group 5 | / | / | / | / | / |
Group 6 | / | / | / | / | / |
Group 7 | / | / | / | / | |
Group 8 | / | / | / | / | / |
Group 9 | / | / | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Prasad, G.; Lampe, L.; Leung, V. Power Line Communication and Sensing Using Time Series Forecasting. Sensors 2022, 22, 5320. https://doi.org/10.3390/s22145320
Huo Y, Prasad G, Lampe L, Leung V. Power Line Communication and Sensing Using Time Series Forecasting. Sensors. 2022; 22(14):5320. https://doi.org/10.3390/s22145320
Chicago/Turabian StyleHuo, Yinjia, Gautham Prasad, Lutz Lampe, and Victor Leung. 2022. "Power Line Communication and Sensing Using Time Series Forecasting" Sensors 22, no. 14: 5320. https://doi.org/10.3390/s22145320
APA StyleHuo, Y., Prasad, G., Lampe, L., & Leung, V. (2022). Power Line Communication and Sensing Using Time Series Forecasting. Sensors, 22(14), 5320. https://doi.org/10.3390/s22145320