Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System
Abstract
:1. Introduction
2. ROS–Gazebo Simulation Platform
- (1)
- Gazebo updates the model state information in real time by the simulation model plugin;
- (2)
- ROS control layer regularly obtains and calculates the state information from the simulation model;
- (3)
- The behavior algorithm obtains the calculated state information and performs behavior derivation calculation;
- (4)
- The node of generating control instruction obtains the behavior information and generates the control instructions;
- (5)
- Gazebo simulation plugin gets control instructions to control the motion of simulation model.
3. Kinematic Model of 6-DOF Manipulator Capturing Moving Target
4. Capture and Placement Control System
4.1. Capture and Placement Strategy
4.2. Capture Control Scheme
4.2.1. Feedforward Control by the Motion Estimation Method
4.2.2. PID Controller with Dead Zone Constraint
4.2.3. Online Tuning of PID Coefficients
5. Experimental Results and Discussions
5.1. Dynamic Response Speed Analysis
5.2. Robustness Test under Gauss Noise and Disturbance
5.3. Autonomous Operation Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Forward Kinematics Model
Appendix B. Instantaneous Kinematics Model
Appendix C. Kalman Filter Model
References
- Castelli, F.; Michieletto, S.; Ghidoni, S.; Pagello, E. A machine learning-based visual servoing approach for fast robot control in industrial setting. Int. J. Adv. Robot. Syst. 2017, 14, 172988141773888. [Google Scholar] [CrossRef]
- Filipescu, A.; Mincă, E.; Filipescu, A.; Coandă, H.G. Manufacturing Technology on a Mechatronics Line Assisted by Autonomous Robotic Systems, Robotic Manipulators and Visual Servoing Systems. Actuators 2020, 9, 127. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Solanes, J.E.; Gracia, L.; Tornero, J. Robust auto tool change for industrial robots using visual servoing. Int. J. Syst. Sci. 2019, 50, 432–449. [Google Scholar] [CrossRef] [Green Version]
- Chaumette, F.; Hutchinson, S. Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90. [Google Scholar] [CrossRef]
- Chaumette, F.; Hutchinson, S. Visual servo control. II. Advanced approaches. IEEE Robot. Autom. Mag. 2007, 14, 109–118. [Google Scholar] [CrossRef]
- Kang, M.; Chen, H.; Dong, J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-leaning. Neurocomputing 2020, 402, 384–394. [Google Scholar] [CrossRef]
- Qiu, Z.; Hu, S.; Liang, X. Disturbance observer based adaptive model predictive control for uncalibrated visual servoing in constrained environments. ISA Trans. 2020, 106, 40–50. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Liang, X.; Miao, Y. Visual Servoing of Flexible-Link Manipulators by Considering Vibration Suppression Without Deformation Measurements. IEEE Trans. Cybern. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Larouche, B.P.; Zhu, Z.H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Auton. Robot. 2014, 37, 157–167. [Google Scholar] [CrossRef]
- Larouche, B.P.; Zhu, Z.H. Position-based visual servoing in robotic capture of moving target enhanced by Kalman filter. Int. J. Robot. Autom. 2015, 30, 267–277. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, Z.H. Position-based visual servo control of autonomous robotic manipulators. Acta. Astronaut. 2015, 115, 291–302. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Pan, W.; Cho, Y.Y. Collision Avoidance for Redundant Robots in Position-Based Visual Servoing. IEEE Syst. J. 2019, 13, 3479–3489. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, H.; Tian, Y. Adaptive sliding mode observer–based integral sliding mode model-free torque control for elastomer series elastic actuator–based manipulator. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 1010–1028. [Google Scholar] [CrossRef]
- Tofigh, M.A.; Mahjoob, M.J.; Hanachi, M.R.; Ayati, M. Fractional sliding mode control for an autonomous two-wheeled vehicle equipped with an innovative gyroscopic actuator. Robot. Auton. Syst. 2021, 140, 103756. [Google Scholar] [CrossRef]
- Grami, S.; Okonkwo, P.C. Friction Compensation in Robot Manipulator Using Artificial Neural Network. In Proceedings of the Advances in Automation, Signal Processing, Instrumentation, and Control, Singapore, 6 March 2021. [Google Scholar]
- Li, S.; Wang, H.; Rafique, M.U. A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1908–1918. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.; Karimi, H.R.; Knoll, A.; De, M.E. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results. Neural Netw. 2020, 131, 291–299. [Google Scholar] [CrossRef]
- Hu, Y.; Si, B.A. Reinforcement Learning Neural Network for Robotic Manipulator Control. Neural Comput. 2018, 30, 1983–2004. [Google Scholar] [CrossRef] [Green Version]
- Yen, V.T.; Nan, W.Y.; Van, C.P. Robust Adaptive Sliding Mode Neural Networks Control for Industrial Robot Manipulators. Int. J. Control Autom. 2019, 17, 783–792. [Google Scholar] [CrossRef]
- Li, P.; Zhu, G. IMC-based PID control of servo motors with extended state observer. Mechatronics 2019, 62, 102252. [Google Scholar] [CrossRef]
- Jin, X.; Chen, K.; Zhao, Y.; Ji, J.; Jing, P. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller. Measurement 2020, 164, 108023. [Google Scholar] [CrossRef]
- Ahmed, T.; Islam, M.R.; Brahmi, B.; Rahman, M.H. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Sensors 2022, 22, 3747. [Google Scholar] [CrossRef] [PubMed]
- Loucif, F.; Kechida, S.; Sebbagh, A. Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator. J. Braz. Soc. Mech. Sci. 2019, 42, 1. [Google Scholar] [CrossRef]
- Xue, F.; Fan, Z. Kinematic control of a cable-driven snake-like manipulator for deep-water based on fuzzy PID controller. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 989–998. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, Z.; Luo, X. Feedforward-plus-proportional–integral–derivative controller for agricultural robot turning in headland. Int. J. Adv. Robot. Syst. 2020, 17, 172988141989767. [Google Scholar] [CrossRef]
- Londhe, P.S.; Singh, Y.; Santhakumar, M.; Patre, B.M.; Waghmare, L.M. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator. ISA Trans. 2016, 63, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Koubâa, A. Robot Operating System (ROS); Springer: Cham, Switzerland, 2017; pp. 112–156. [Google Scholar]
- Jalil, A. Robot Operating System Dan Gazebo Sebagai Media Pembelajaran Robot Interaktif. ILKOM J. Ilm. 2018, 10, 284–289. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Chen, X.; Wang, Z.; Wang, Y.; Chi, G. Investigation on MRR and machining gap of micro reciprocated wire-EDM for SKD11. Int. J. Precis. Eng. Manuf. 2020, 21, 11–22. [Google Scholar] [CrossRef]
ec | NB | NM | NS | Z | PS | PM | PB | |
---|---|---|---|---|---|---|---|---|
e | ||||||||
NB | (PB, NB, PS) | (PB, NB, NS) | (PM, NM, NB) | (PM, NM, NB) | (PS, NS, NB) | (Z, Z, NM) | (Z, Z, PS) | |
NM | (PB, NB, PS) | (PB, NB, NS) | (PM, NM, NB) | (PS, NS, NM) | (PS, NS, NM) | (Z, Z, NS) | (NS, Z, Z) | |
NS | (PM, NB, Z) | (PM, NM, NS) | (PM, NS, NM) | (PS, NS, NM) | (Z, Z, NS) | (NS, PS, NS) | (NS, PS, Z) | |
Z | (PM, NM, Z) | (PM, NM, NS) | (PS, NS, NS) | (Z, Z, NS) | (NS, PS, NS) | (NM, PM, NS) | (NM, PM, Z) | |
PS | (PS, NM, Z) | (PS, NS, Z) | (Z, Z, Z) | (NS, PS, Z) | (NS, PS, Z) | (NM, PM, Z) | (NM, PB, Z) | |
PM | (PS, Z, PB) | (Z, Z, NS) | (NS, PS, PS) | (NM, PS, PS) | (NM, PM, PS) | (NM, PB, PS) | (NB, PB, PB) | |
PB | (Z, Z, PB) | (Z, Z, PM) | (NM, PS, PM) | (NM, PM, PM) | (NM, PM, PS) | (NB, PB, PS) | (NB, PB, PB) |
PID | VFPID | FPID | Developed | |
---|---|---|---|---|
Phase a (s) | 2.573 | 1.098 | 1.495 | 1.010 |
Phase b (s) | 5.752 | 3.121 | 4.930 | 2.852 |
PID | VFPID | FPID | Developed | |
---|---|---|---|---|
Phase a (s) | 1.253 | 1.040 | 1.101 | 0.932 |
Phase b (s) | 4.243 | 2.824 | 3.982 | 2.487 |
PID | VFPID | FPID | Developed | |
---|---|---|---|---|
aex (m) | 0.615 | 0.342 | 0.415 | 0.244 |
aey (m) | 4.244 | 2.717 | 3.98 | 2.484 |
tex (s) | 3.872 | 2.756 | 3.392 | 2.285 |
tey (s) | 3.767 | 2.682 | 3.317 | 2.217 |
PID | VFPID | FPID | Developed | |
---|---|---|---|---|
ti (s) | 10.541 | 6.435 | 8.347 | 5.825 |
to (s) | 11.260 | 7.129 | 9.052 | 6.516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liu, P.; Ying, R.; Wen, F. Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System. Sensors 2022, 22, 4836. https://doi.org/10.3390/s22134836
Chen X, Liu P, Ying R, Wen F. Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System. Sensors. 2022; 22(13):4836. https://doi.org/10.3390/s22134836
Chicago/Turabian StyleChen, Xiang, Peilin Liu, Rendong Ying, and Fei Wen. 2022. "Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System" Sensors 22, no. 13: 4836. https://doi.org/10.3390/s22134836
APA StyleChen, X., Liu, P., Ying, R., & Wen, F. (2022). Autonomous 6-DOF Manipulator Operation for Moving Target by a Capture and Placement Control System. Sensors, 22(13), 4836. https://doi.org/10.3390/s22134836