Optimization of Virtual Shack-Hartmann Wavefront Sensing
Abstract
:1. Introduction
2. Methods
2.1. Implementation of vSHWS
2.2. Optimization of vSHWS
3. Results
3.1. Shape of Virtual Lenslet
3.2. Zero-Padding of Sub-Aperture Electric Field
3.3. Number of Sub-Apertures
3.4. Data Interpolation
3.5. Results of Parameter Optimizations
3.6. Anti-Noise Performance
3.7. Clinical Human Ocular Aberrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Zernike Modes | Patient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
4 | −0.1973 | −0.1600 | −0.0925 | 0.1798 | −0.0524 | 0.8857 | 0.1599 | 0.0292 | −0.3909 | 0.9966 |
5 | −1.8435 | 9.6149 | 0.9575 | 2.9316 | −0.1412 | 2.6880 | −1.1025 | 1.1807 | 0.6760 | −0.4776 |
6 | −1.5900 | −0.5373 | 0.0105 | −0.9978 | 0.0445 | −0.6290 | 1.0174 | −2.0036 | 0.1262 | −0.2747 |
7 | 0.0666 | −0.3082 | −0.0627 | −0.0836 | −0.1233 | −0.0887 | −0.2842 | −0.0310 | 0.1864 | −0.6684 |
8 | 0.2207 | 0.1601 | 0.0376 | −0.0428 | 0.1987 | −0.1467 | −0.0487 | 0.2097 | 0.1675 | −0.1657 |
9 | 0.0768 | −0.0495 | 0.0191 | −0.0684 | −0.0795 | −0.1524 | 0.1163 | 0.0440 | −0.0941 | −0.0837 |
10 | −0.1374 | 0.2678 | −0.0243 | −0.0348 | 0.0857 | 0.3965 | −0.1188 | −0.0619 | 0.0705 | −0.8523 |
11 | 0.0739 | −0.4793 | 0.0419 | −0.0052 | −0.0557 | 0.0391 | −0.1254 | −0.0428 | 0.0166 | −0.1590 |
12 | −0.0330 | 0.3016 | −0.0630 | 0.0507 | 0.0398 | 0.0923 | 0.0085 | 0.1183 | 0.0001 | 0.0238 |
13 | 0.1209 | 0.0253 | 0.3635 | 0.2708 | 0.3113 | −0.3632 | 0.1269 | 0.1255 | −0.1646 | 0.2152 |
14 | −0.0378 | 0.1148 | −0.0328 | −0.1305 | −0.0630 | 0.1100 | −0.1113 | −0.0117 | 0.0465 | −0.0295 |
15 | −0.0053 | 0.0940 | 0.0987 | 0.0909 | 0.0644 | −0.1782 | 0.1866 | −0.0157 | −0.0098 | 0.3866 |
16 | 0.0214 | −0.4494 | −0.0233 | 0.0491 | −0.0205 | 0.0425 | 0.0358 | −0.0563 | 0.0180 | 0.2729 |
17 | 0.0160 | 0.0497 | 0.0377 | 0.1049 | −0.0002 | 0.0995 | 0.0007 | −0.0132 | −0.0167 | 0.0658 |
18 | −0.0338 | −0.0204 | −0.0215 | 0.0105 | −0.0084 | −0.0123 | 0.0052 | 0.0060 | −0.0095 | 0.0997 |
19 | −0.0013 | 0.0939 | 0.0191 | 0.0309 | −0.0010 | −0.0498 | −0.0106 | −0.0163 | −0.0077 | −0.1261 |
20 | 0.0141 | −0.1724 | −0.0289 | −0.0166 | −0.0058 | −0.1283 | 0.0419 | 0.0664 | −0.0355 | 0.1476 |
21 | −0.0205 | 0.0664 | −0.0302 | 0.0104 | 0.0582 | 0.1305 | −0.0508 | 0.0547 | −0.0245 | −0.0985 |
22 | −0.0070 | −0.2003 | −0.0203 | −0.0140 | 0.0004 | 0.0021 | −0.0366 | −0.0541 | −0.0231 | −0.0927 |
23 | −0.0290 | −0.3285 | 0.0433 | −0.0046 | 0.0137 | −0.0224 | 0.0303 | 0.0133 | −0.0107 | −0.0202 |
24 | 0.0070 | 0.0434 | −0.0355 | 0.0134 | −0.0024 | 0.0041 | 0.0001 | −0.0058 | 0.0257 | −0.0754 |
25 | −0.0390 | −0.0452 | 0.1052 | 0.0086 | 0.0070 | −0.0213 | 0.0166 | −0.0020 | 0.0434 | 0.0551 |
26 | 0.0480 | 0.0865 | −0.0216 | 0.0108 | 0.0029 | −0.0102 | −0.0553 | 0.0495 | 0.0060 | 0.0301 |
27 | −0.0222 | −0.0008 | 0.0349 | −0.0285 | 0.0018 | 0.0488 | 0.0112 | −0.0256 | −0.0002 | −0.0885 |
28 | −0.0005 | 0.3029 | 0.0144 | 0.0097 | −0.0191 | −0.0563 | −0.043 | 0.0361 | 0.0107 | −0.0521 |
29 | 0.0367 | −0.0572 | 0.0100 | −0.0239 | −0.0282 | 0.0178 | −0.0054 | 0.0332 | 0.0576 | −0.0101 |
20 | −0.0202 | −0.2556 | −0.0118 | −0.0128 | 0.0024 | 0.0177 | 0.0011 | 0.0223 | −0.0085 | −0.0687 |
31 | −0.0030 | −0.0619 | 0.0122 | −0.0099 | −0.0012 | −0.0352 | −0.0189 | −0.0041 | 0.0099 | 0.0154 |
32 | −0.0158 | −0.0431 | −0.0020 | 0.0289 | 0.0050 | 0.0273 | 0.0239 | 0.0051 | 0.0041 | 0.0500 |
33 | 0.0002 | 0.0559 | 0.0006 | 0.0083 | 0.0116 | 0.0221 | 0.0090 | 0.0011 | −0.0061 | −0.0026 |
34 | −0.0121 | 0.0354 | −0.0081 | −0.0128 | −0.0086 | 0.0322 | 0.0106 | −0.0126 | 0.0230 | −0.0057 |
35 | 0.0190 | 0.2953 | −0.0097 | −0.0513 | −0.0141 | −0.0776 | 0.0008 | −0.0060 | 0.0120 | 0.0434 |
36 | 0.0119 | 0.0780 | 0.0219 | −0.0089 | 0.0080 | 0.1336 | 0.0302 | 0.0200 | −0.0255 | 0.0424 |
Zernike Modes | Patient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
4 | 0.1626 | −0.2911 | 0.1316 | −0.1530 | −0.2043 | 0.3131 | 0.3247 | −0.8298 | −0.0350 | −0.4166 |
5 | −0.3104 | 3.8403 | 10.2138 | 2.4758 | 2.4199 | 1.9592 | −0.2767 | 4.0751 | 2.5128 | 3.2984 |
6 | 0.2264 | 0.5834 | −0.5318 | −0.7658 | 1.0672 | 0.1734 | 0.2948 | 0.5710 | −0.4314 | −0.2774 |
7 | −0.5651 | 0.1585 | 0.1009 | 0.1373 | 0.0926 | 0.5468 | −0.1791 | −0.2911 | −0.0166 | −0.2369 |
8 | 0.2698 | 0.2721 | −0.2064 | −0.2573 | −0.4067 | 0.1804 | 0.0005 | −0.3212 | 0.1435 | −0.0581 |
9 | −0.1277 | 0.0379 | −0.0875 | −0.0820 | −0.1160 | 0.3371 | −0.1922 | −0.0093 | −0.0408 | 0.0255 |
10 | 0.3687 | −0.3038 | 0.1127 | 0.1048 | 0.0933 | 0.0274 | −0.0387 | −0.0587 | −0.0677 | 0.0936 |
11 | −0.1098 | 0.0684 | 0.0131 | 0.0163 | 0.0930 | 0.2226 | 0.1782 | −0.0780 | −0.0180 | −0.0257 |
12 | −0.0485 | −0.0324 | −0.0197 | −0.0083 | 0.0772 | 0.1399 | 0.0439 | −0.0078 | −0.0066 | 0.0186 |
13 | −0.1248 | −0.1533 | 0.2039 | 0.0569 | 0.2442 | 0.1056 | 0.3033 | −0.7340 | −0.2086 | −0.0657 |
14 | 0.0312 | −0.0659 | 0.0166 | −0.0347 | −0.0636 | 0.0188 | 0.1143 | 0.1575 | −0.0082 | 0.1106 |
15 | −0.0591 | −0.0734 | −0.0129 | 0.0903 | 0.0449 | 0.0306 | −0.0804 | 0.0030 | 0.0363 | −0.0299 |
16 | −0.1921 | 0.0772 | −0.0319 | 0.0170 | −0.0583 | 0.0887 | −0.0617 | 0.0597 | 0.0917 | −0.0281 |
17 | 0.1646 | −0.0145 | −0.0165 | 0.0316 | 0.0618 | 0.0217 | 0.0466 | 0.0686 | 0.0149 | 0.1507 |
18 | −0.0372 | −0.0011 | −0.0132 | −0.0253 | 0.0306 | 0.0747 | −0.0790 | −0.0316 | 0.0397 | −0.0238 |
19 | −0.0372 | 0.1007 | −0.0029 | 0.0420 | −0.0439 | 0.0981 | 0.0151 | −0.0077 | −0.0001 | −0.0321 |
20 | −0.0539 | 0.0732 | −0.0178 | −0.0540 | −0.0792 | 0.0467 | 0.0350 | 0.0001 | −0.0235 | 0.0058 |
21 | 0.0263 | 0.0578 | −0.0183 | −0.0273 | −0.0577 | 0.0110 | 0.0299 | 0.0988 | −0.0406 | −0.0371 |
22 | −0.0177 | 0.1391 | 0.0002 | −0.0153 | −0.0644 | 0.0944 | 0.0121 | −0.0036 | −0.0330 | −0.0094 |
23 | 0.0056 | −0.0280 | 0.0035 | −0.0220 | 0.0117 | 0.0689 | −0.0539 | 0.0194 | −0.0035 | −0.0134 |
24 | 0.0139 | 0.0140 | −0.0027 | −0.0299 | 0.0264 | 0.0565 | 0.0174 | 0.0157 | −0.0363 | 0.0166 |
25 | −0.0487 | 0.0435 | 0.0081 | −0.0118 | 0.0375 | 0.1115 | 0.0160 | 0.0042 | −0.0502 | −0.0346 |
26 | −0.0123 | −0.0393 | 0.0153 | −0.0014 | −0.1286 | −0.0318 | −0.0552 | −0.0137 | 0.0297 | 0.0148 |
27 | −0.0117 | −0.0372 | −0.0034 | 0.0121 | 0.0100 | 0.0245 | 0.0399 | −0.0083 | −0.0033 | −0.0169 |
28 | 0.0745 | −0.2031 | 0.0139 | −0.0151 | 0.0137 | 0.0271 | −0.0326 | 0.0377 | −0.0175 | 0.0123 |
29 | −0.0147 | 0.0378 | −0.0198 | 0.0032 | 0.0774 | 0.2117 | −0.0379 | 0.0303 | 0.0905 | −0.0405 |
20 | 0.0319 | −0.0204 | 0.0050 | 0.0031 | 0.0396 | −0.0175 | −0.0168 | −0.0118 | −0.0307 | −0.0168 |
31 | −0.0349 | −0.0280 | 0.0059 | −0.0101 | −0.0376 | 0.0827 | −0.0061 | −0.0273 | 0.0048 | −0.0365 |
32 | 0.0237 | −0.0032 | 0.0072 | 0.0073 | 0.0868 | 0.0159 | −0.0143 | 0.0305 | 0.0140 | 0.0239 |
33 | 0.0187 | 0.0053 | −0.0070 | −0.0077 | −0.0411 | −0.0018 | 0.0500 | −0.0076 | 0.0079 | −0.0122 |
34 | −0.0043 | −0.0098 | 0.0023 | 0.0080 | −0.0220 | −0.0298 | 0.0257 | −0.0080 | 0.0014 | 0.0075 |
35 | 0.0115 | 0.0303 | 0.0201 | 0.0041 | −0.0132 | 0.0582 | −0.0543 | −0.0066 | −0.0010 | 0.0294 |
36 | 0.0436 | −0.0069 | 0.0101 | 0.0030 | 0.1714 | 0.0186 | 0.0044 | −0.0035 | 0.0032 | 0.0189 |
References
- Shack, R.V.; Platt, B.C. Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. 1971, 61, 656. [Google Scholar] [CrossRef]
- Wilson, R.W. SLODAR: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2002, 337, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, D.; Yuan, Q.; Xue, Q.; Zhou, W.; Yang, Y.; Zhang, X.; Deng, X.; Wang, Y.; Zhao, J.; et al. Wavefront control of main-amplifier system in the SG-III laser facility. Opt. Comm. 2017, 394, 92–97. [Google Scholar] [CrossRef]
- Glanc, M.; Gendron, E.; Lacombe, F.; Lafaille, D.; Gargasson, J.-F.; Lena, P. Towards Wide-Field Retinal Imaging with Adaptive Optics. Opt. Comm. 2004, 230, 225–238. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Xian, H. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics. Appl. Opt. 2015, 54, 8722–8725. [Google Scholar] [CrossRef]
- Yobani, M.; Rufino, D.-U.; Andrea, L.P.; Amilcar, E.-M.; Frank, S. Measuring conic constant and vertex radius of fast convex conic surfaces from a set of Hartmann patterns. Opt. Comm. 2016, 363, 166–175. [Google Scholar] [CrossRef]
- Dai, G. Wavefront Optics for Vision Correction, 1st ed.; SPIE: Washington, DC, USA, 2008; pp. 97–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Mocci, J.; Wahl, D.J.; Meleppat, R.K.; Manna, S.K.; Quintavalla, M.; Muradore, R.; Saraunic, M.V.; Bonora, S.; Pugh, E.N., Jr.; et al. Effect of a Contact Lens on Mouse Retinal in vivo Imaging: Effective Focal Length Changes and Monochromatic Aberrations. Exp. Eye Res. 2018, 172, 86–93. [Google Scholar] [CrossRef]
- Rha, J.; Volez, D.G.; Giles, M.K. Reconfigurable Shack-Hartmann Wavefront Sensor. Opt. Eng. 2004, 43, 251–256. [Google Scholar] [CrossRef]
- Tuohy, S.; Plodoleanu, A. Depth-Resolved Wavefront Aberrations Using a Coherence-Gated Shack-Hartmann Wavefront Sensor. Opt. Express 2010, 18, 3458–3476. [Google Scholar] [CrossRef] [Green Version]
- Feierabend, M.; Rückel, M.; Denk, W. Coherence-gated wave-front sensing in strongly scattering samples. Opt. Lett. 2004, 29, 2255–2257. [Google Scholar] [CrossRef]
- Rückel, M.; Denk, W. Properties of coherence-gated wavefront sensing. J. Opt. Soc. Am. A 2007, 24, 3517–3529. [Google Scholar] [CrossRef]
- Binding, J.; Rückel, M. Coherence-gated wavefront sensing. In Adaptive Optics for Biological Imaging, 1st ed.; Cubby, J.A., Ed.; CRC Press: Florida, FL, USA, 2013; pp. 253–270. [Google Scholar] [CrossRef]
- Akondi, V.; Falldrof, C.; Marcos, S.; Vohnsen, B. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor. Opt. Express 2015, 23, 25425–25439. [Google Scholar] [CrossRef] [Green Version]
- Akondi, V.; Dubra, A. Accounting for focal shift in the Shack-Hartmann wavefront sensor. Opt. Lett. 2019, 44, 4151–4154. [Google Scholar] [CrossRef]
- Yoon, G. Wavefront sensing and diagnostic uses. In Adaptive Optics for Vision Science-Principles, Practices, Design, and Applications, 1st ed.; Porter, J., Queener, H.M., Lin, J.E., Thorn, L., Awwal, A., Eds.; Wiley-Interscience: New Jersey, NJ, USA, 2006; pp. 63–81. [Google Scholar] [CrossRef]
- Akondi, V.; Steven, S.; Dubra, A. Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor. Opt. Lett. 2019, 44, 4167–4170. [Google Scholar] [CrossRef]
- Werkhoven, T.I.M.; Antonello, J.; Truong, H.H.; Verhaegen, M.; Gerritsen, H.; Keller, C.U. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy. Opt. Express 2014, 22, 9715–9733. [Google Scholar] [CrossRef] [Green Version]
- Rückel, M.; Mack-Bucher, J.A.; Denk, W. Adaptive wavefront correction in tow-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. USA 2006, 103, 17137–17142. [Google Scholar] [CrossRef] [Green Version]
- Rückel, M.; Denk, W. Coherence-gated wavefront sensing using a virtual Shack-Hartmann sensor. In Proceedings of the Advanced Wavefront Control: Methods, Deveices, and Applications IV, San Diego, CA, USA, 13–17 August 2006; Giles, M.K., Gonglewski, J.D., Carreras, R.A., Eds.; SPIE: Washington, DC, USA, 2006; Volume 6306, p. 63060H1. [Google Scholar] [CrossRef]
- Wang, J.; Leger, J.-F.; Binding, J.; Boccara, A.C.; Gigan, S.; Bourdieu, L. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a linnik interferometer. Biomed. Opt. Express 2012, 23, 2510–2525. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Leger, J.-F.; Binding, J.; Boccara, A.C.; Gigan, S.; Bourdieu, L. Measuring aberrations in the rat brain by a new coherence-gated wavefront sensor using a linnik interferometer. In Proceedings of the Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIX, San Francisco, CA, USA, 21–26 January 2012; Conchello, J.-A., Cogswell, C.J., Wilson, T., Brown, T.G., Eds.; SPIE: Washington, WA, USA, 2012; Volume 8227, p. 822702. [Google Scholar] [CrossRef]
- Thibos, L.N.; Bradley, A.; Hong, X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthal. Physiol. Opt. 2002, 22, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V.N. Optical Imaging and Aberration, Part. III: Wavefront Analysis, 1st ed.; SPIE: Washington, DC, USA, 2013; p. 379. [Google Scholar] [CrossRef] [Green Version]
- Thibos, L.N.; Hong, X.; Bradley, A.; Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 2002, 19, 2329–2348. [Google Scholar] [CrossRef]
- Thibos, L.N.; Applegate, R.A.; Schwiegerling, J.T.; Webb, R. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 2002, 18, S652–S660. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Ma, L. Physical Optics and Applied Optics, 2nd ed.; XDUPH: Shanxi, China, 2014; pp. 134–140. ISBN 978-7-5606-0850-1. [Google Scholar]
- Zhou, Y.; Xu, B.; Chen, S.; Liu, W.; Wang, S. Virtual Hartmann-Shack image applied in laser beam wavefront correction and numerical simulation method. In Proceedings of the Optical and Optoelectronic Sensing and Imaging Technology, Beijing, China, 5–7 May 2015; Gong, H., Wu, N., Ni, Y., Chen, W., Lu, J., Eds.; SPIE: Washington, DC, USA, 2015; Volume 9674, p. 96740N. [Google Scholar] [CrossRef]
- Park, S.-K.; Baik, S.-H.; Kim, C.-J.; Ra, S.W. A study on a fast measuring technique of wavefront using a Shack-Hartmann sensor. Opt. Laser Technol. 2002, 34, 687–694. [Google Scholar] [CrossRef]
- Yin, X.; Li, X.; Zhao, L.; Fang, Z. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack–Hartmann wavefront sensor. Appl. Opt. 2009, 48, 6088–6098. [Google Scholar] [CrossRef] [PubMed]
- Pfund, J.; Lindlein, N.; Schwider, J. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. Opt. Lett. 1998, 23, 995–997. [Google Scholar] [CrossRef] [PubMed]
Type | Parameter | Patient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Normal eye | PV (× 10−4 λ) | 4.591 | 399.364 | 1.354 | 11.789 | 0.990 | 4.477 | 3.985 | 3.540 | 1.892 | 7.085 |
RMS (× 10−5 λ) | 5.561 | 450.722 | 1.159 | 16.702 | 1.179 | 6.708 | 2.677 | 5.187 | 1.317 | 5.521 | |
Diseased eye | PV (× 10−4 λ) | 2.241 | 9.286 | 193.745 | 6.921 | 10.192 | 19.965 | 5.661 | 7.646 | 3.133 | 4.631 |
RMS (× 10−4 λ) | 0.160 | 1.641 | 36.144 | 0.836 | 1.115 | 1.585 | 0.416 | 1.730 | 0.507 | 0.938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Yang, Y.; Xiao, F.; Dai, H.; Geng, C.; Zhang, Y. Optimization of Virtual Shack-Hartmann Wavefront Sensing. Sensors 2021, 21, 4698. https://doi.org/10.3390/s21144698
Yue X, Yang Y, Xiao F, Dai H, Geng C, Zhang Y. Optimization of Virtual Shack-Hartmann Wavefront Sensing. Sensors. 2021; 21(14):4698. https://doi.org/10.3390/s21144698
Chicago/Turabian StyleYue, Xian, Yaliang Yang, Fei Xiao, Hao Dai, Chao Geng, and Yudong Zhang. 2021. "Optimization of Virtual Shack-Hartmann Wavefront Sensing" Sensors 21, no. 14: 4698. https://doi.org/10.3390/s21144698
APA StyleYue, X., Yang, Y., Xiao, F., Dai, H., Geng, C., & Zhang, Y. (2021). Optimization of Virtual Shack-Hartmann Wavefront Sensing. Sensors, 21(14), 4698. https://doi.org/10.3390/s21144698