Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Setup
2.2. Compton Camera
2.3. Event Selection
2.4. Image Reconstruction
2.5. DEW
2.6. Quantitative Analysis
2.7. Experimental Study
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Schoenfelder, V.; Aarts, H.; Bennett, K.; Boer, H.; Clear, J.; Collmar, W.; Connors, A.; Deerenberg, A.; Diehl, R.; Dordrecht, A.; et al. Instrument description and performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory. Astrophys. J. Suppl. Ser. 1993, 86, 657. [Google Scholar] [CrossRef]
- Takahashi, T.; Kokubun, M.; Mitsuda, K.; Kelley, R.; Ohashi, T.; Aharonian, F.; Akamatsu, H.; Akimoto, F.; Allen, S.; Anabuki, N.; et al. The ASTRO-H (Hitomi) X-ray Astronomy Satellite. In Proceedings of the Astronomical Telescopes + Instrumentation, Edinburgh, Scotland, 26 June–1 July 2016. [Google Scholar]
- Fujieda, K.; Kataoka, J.; Mochizuki, S.; Tagawa, L.; Sato, S.; Tanaka, R.; Matsunaga, K.; Kamiya, T.; Watabe, T.; Kato, H.; et al. First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 2020, 958, 162802. [Google Scholar] [CrossRef]
- Shiba, S.; Parajuli, R.K.; Sakai, M.; Oike, T.; Ohno, T.; Nakano, T. Use of a Si/CdTe Compton Camera for in vivo real-time monitoring of annihilation gamma rays generated by carbon ion beam irradiation. Front. Oncol. 2020. [Google Scholar] [CrossRef]
- Nakano, T.; Sakai, M.; Torikai, K.; Suzuki, Y.; Noda, S.E.; Yamaguchi, M.; Takeda, S.; Nagao, Y.; Kikuchi, M.; Odaka, H.; et al. Imaging of 99mTc-DMSA and 18F-FDG in humans using a Si/CdTe Compton camera. Phys. Med. Biol. 2019, 65, 05LT01. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Yamaguchi, M.; Nagao, Y.; Kawachi, N.; Kikuchi, M.; Torikai, K.; Kamiya, T.; Takeda, S.; Watanabe, S.; Takahashi, T.; et al. In vivo simultaneous imaging with (99m)Tc and (18)F using a Compton camera. Phys. Med. Biol. 2018, 63, 205006. [Google Scholar] [CrossRef] [PubMed]
- Shimazoe, K.; Yoshino, M.; Ohshima, Y.; Uenomachi, M.; Oogane, K.; Orita, T.; Takahashi, H.; Kamada, K.; Yoshikawa, A.; Takahashi, M. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl. Instrum. Methods Phys. Res. Sec. Accel. Spectrom. Detect. Assoc. Equip. 2020, 954, 161499. [Google Scholar] [CrossRef]
- Kishimoto, A.; Kataoka, J.; Taya, T.; Tagawa, L.; Mochizuki, S.; Ohsuka, S.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.; et al. First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 2017, 7, 2110. [Google Scholar] [CrossRef]
- Motomura, S.; Kanayama, Y.; Hiromura, M.; Fukuchi, T.; Ida, T.; Haba, H.; Watanabe, Y.; Enomoto, S. Improved imaging performance of a semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J. Anal. At. Spectrom. 2013, 28, 934–939. [Google Scholar] [CrossRef]
- Fontana, M.; Dauvergne, D.; Letang, J.M.; Ley, J.L.; Testa, E. Compton camera study for high efficiency SPECT and benchmark with Anger system. Phys. Med. Biol. 2017, 62, 8794–8812. [Google Scholar] [CrossRef]
- van Dijk, L.K.; Boerman, O.C.; Franssen, G.M.; Kaanders, J.H.; Bussink, J. 111In-cetuximab-F(ab’)2 SPECT and 18F-FDG PET for prediction and response monitoring of combined-modality treatment of human head and neck carcinomas in a mouse model. J. Nucl. Med. 2015, 56, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Esquinas, P.L.; Rodríguez-Rodríguez, C.; Esposito, T.V.F.; Harboe, J.; Bergamo, M.; Celler, A.; Saatchi, K.; Sossi, V.; Häfeli, U.O. Dual SPECT imaging of 111In and 67Ga to simultaneously determine in vivo the pharmacokinetics of different radiopharmaceuticals: A quantitative tool in pre-clinical research. Phys. Med. Biol. 2018, 63, 235029. [Google Scholar] [CrossRef] [PubMed]
- Burt, R. Dual isotope F-18 FDG and Tc-99m RBC imaging for lung cancer. Clin. Nucl. Med. 1998, 23, 807–809. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, W.; Suzuki, A.; Shiga, T.; Kubo, N.; Morimoto, Y.; Ueno, Y.; Kobashi, K.; Umegaki, K.; Tamaki, N. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction. EJNMMI Phys. 2016, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Lehtiö, K.; Oikonen, V.; Nyman, S.; Grönroos, T.; Roivainen, A.; Eskola, O.; Minn, H. Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratio, Eur. J. Nucl. Med. Mol. Imaging. 2003, 30, 101–108. [Google Scholar]
- O’Brien, J.T.; Firbank, M.J.; Davison, C.; Barnett, N.; Bamford, C.; Donaldson, C.; Olsen, K.; Herholz, K.; Williams, D.; Lloyd, J. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J. Nucl. Med. 2014, 55, 1959–1965. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Frey, E.C. Quantitative evaluation of simultaneous reconstruction with model-based crosstalk compensation for dual-isotope simultaneous acquisition brain SPECT. Med. Phys. 2009, 36, 2021–2033. [Google Scholar] [CrossRef]
- Fukuchi, K.; Katafuchi, T.; Fukushima, K.; Shimotsu, Y.; Toba, M.; Hayashida, K.; Takamiya, M.; Ishida, Y. Estimation of myocardial perfusion and viability using simultaneous 99mTc-tetrofosmin—FDG collimated SPECT. J. Nucl. Med. 2000, 41, 1318–1323. [Google Scholar]
- Jaszczak, R.J.; Greer, K.L.; Floyd, C.E., Jr.; Harris, C.C.; Coleman, R.E. Improved SPECT quantification using compensation for scattered photons. J. Nucl. Med. 1984, 25, 893–900. [Google Scholar]
- Tsuji, A.; Kojima, A.; Matsumoto, M.; Oyama, Y.; Tomiguchi, S.; Kira, T.; Takagi, Y.; Shimomura, O.; Takahashi, M. A new method for crosstalk correction in simultaneous dual-isotope myocardial imaging with Tl-201 and I-123. Ann. Nucl. Med. 1999, 13, 317–323. [Google Scholar] [CrossRef]
- Tsartsalis, S.; Tournier, B.B.; Habiby, S.; Ben Hamad, M.; Barca, C.; Ginovart, N.; Millet, P. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors. Neuroimage 2018, 176, 528–540. [Google Scholar] [CrossRef]
- Takahashi, Y.; Mochiki, M.; Koyama, K.; Ino, T.; Yamaji, H.; Kawakami, A. Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using (18)F-fluorodeoxyglucose and (99m)Tc-tetrofosmin. Asia Ocean. J. Nucl. Med. Biol. 2016, 4, 66–71. [Google Scholar] [PubMed]
- Takeda, S.; Aono, H.; Okuyama, S.; Ishikawa, S.; Odaka, H.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Nakazawa, K.; Tajima, H.; et al. Experimental Results of the Gamma-Ray Imaging Capability With a Si/CdTe Semiconductor Compton Camera. IEEE Trans. Nucl. Sci. 2009, 56, 783–790. [Google Scholar] [CrossRef]
- Sakai, M.; Parajuli, R.K.; Kikuchi, M.; Yamaguchi, M.; Nagao, Y.; Kawachi, N.; Arakawa, K.; Nakano, T. Effect of number of views on cross-sectional Compton imaging: A fundamental study with backprojection. Phys. Med. 2018, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Kubota, Y.; Parajuli, R.K.; Kikuchi, M.; Arakawa, K.; Nakano, T. Compton imaging with 99mTc for human imaging. Sci. Rep. 2019, 9, 12906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odaka, H.; Ichinohe, Y.; Takeda, S.I.; Fukuyama, T.; Hagino, K.; Saito, S.; Sato, T.; Sato, G.; Watanabe, S.; Kokubun, M.; et al. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors. Nucl. Instrum. Methods Phys. Res. Sec. Accel. Spectrom. Detect. Assoc. Equip. 2012, 695, 179–183. [Google Scholar] [CrossRef]
- Takeda, S.; Odaka, H.; Ishikawa, S.; Watanabe, S.; Aono, H.; Takahashi, T.; Kanayama, Y.; Hiromura, M.; Enomoto, S. Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera. IEEE Trans. Nucl. Sci. 2012, 59, 70–76. [Google Scholar] [CrossRef]
- Wilderman, S.J.; Clinthorne, N.H.; Fessler, J.A.; Rogers, W.L. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. In Proceedings of the 1998 IEEE Nuclear Science Symposium Conference Record, Toronto, ON, Canada, 8–14 November 1998; pp. 1716–1720. [Google Scholar]
- Koral, K.F.; Swailem, F.M.; Buchbinder, S.; Clinthorne, N.H.; Rogers, W.L.; Tsui, B.M. SPECT dual-energy-window Compton correction: Scatter multiplier required for quantification. J. Nucl. Med. 1990, 31, 90–98. [Google Scholar]
- Floyd, C.E.; Jaszczak, R.J.; Harris, C.C.; Coleman, R.E. Energy and spatial distribution of multiple order Compton scatter in SPECT: A Monte Carlo investigation. Phys. Med. Biol. 1984, 29, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Harata, Y.; Ichihara, T.; Kubo, A.; Hashimoto, S. Estimation of scatter component in SPECT planar image using a Monte Carlo method. Kaku Igaku Jpn. J. Nucl. Med. 1990, 27, 467–476. [Google Scholar]
- Mann, S.; Tornai, M. Characterization of simulated incident scatter and the impact on quantification in dedicated breast single-photon emission computed tomography. J. Med. Imaging 2015, 2, 033504. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.-Q.; Koral, K.F.; Ljungberg, M.; Floyd, C.E.; Jaszczak, R.J. A Monte Carlo investigation of dual-energy-window scatter correction for volume-of-interest quantification in99TcmSPECT. Phys. Med. Biol. 1995, 40, 181–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nijs, R.; Lagerburg, V.; Klausen, T.L.; Holm, S. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl. Med. Commun. 2014, 35, 522–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichihara, T.; Ogawa, K.; Motomura, N.; Kubo, A.; Hashimoto, S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J. Nucl. Med. 1993, 34, 2216–2221. [Google Scholar] [PubMed]
- Ogawa, K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann. Nucl. Med. 1994, 8, 277–281. [Google Scholar] [CrossRef]
- Peterson, S.W.; Robertson, D.; Polf, J. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys. Med. Biol. 2010, 55, 6841. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, R.K.; Sakai, M.; Kada, W.; Torikai, K.; Kikuchi, M.; Arakawa, K.; Torikoshi, M.; Nakano, T. Annihilation gamma imaging for carbon ion beam range monitoring using Si/CdTe Compton camera. Phys. Med. Biol. 2019, 64, 055003. [Google Scholar] [CrossRef]
- Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D.S.; Kacperek, A.; Crom, B.L.; Moss, R.; Royle, G.; Speller, R.; et al. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification. J. Instrum. 2018, 13, C01036. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Lee, T. A compact Compton camera using scintillators for the investigation of nuclear materials. Nucl. Instrum. Methods Phys. Res. Sec. Accel. Spectrom. Detect. Assoc. Equip. 2010, 624, 118–124. [Google Scholar] [CrossRef]
- Kataoka, J.; Kishimoto, A.; Taya, T.; Mochizuki, S.; Tagawa, L.; Koide, A.; Sueoka, K.; Morita, H.; Maruhashi, T.; Fujieda, K.; et al. Ultracompact Compton camera for innovative gamma-ray imaging. Nucl. Instrum. Methods Phys. Res. Sec. Accel. Spectrom. Detect. Assoc. Equip. 2018, 912, 1–5. [Google Scholar] [CrossRef]
- Mizumoto, T.; Tomono, D.; Takada, A.; Tanimori, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Mizumura, Y.; Nakamura, K.; Nakamura, S.; et al. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation. J. Instrum. 2015, 10, C06003. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, M.; Parajuli, R.K.; Kubota, Y.; Kubo, N.; Yamaguchi, M.; Nagao, Y.; Kawachi, N.; Kikuchi, M.; Arakawa, K.; Tashiro, M. Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. Sensors 2020, 20, 2453. https://doi.org/10.3390/s20092453
Sakai M, Parajuli RK, Kubota Y, Kubo N, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Arakawa K, Tashiro M. Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. Sensors. 2020; 20(9):2453. https://doi.org/10.3390/s20092453
Chicago/Turabian StyleSakai, Makoto, Raj Kumar Parajuli, Yoshiki Kubota, Nobuteru Kubo, Mitsutaka Yamaguchi, Yuto Nagao, Naoki Kawachi, Mikiko Kikuchi, Kazuo Arakawa, and Mutsumi Tashiro. 2020. "Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging" Sensors 20, no. 9: 2453. https://doi.org/10.3390/s20092453
APA StyleSakai, M., Parajuli, R. K., Kubota, Y., Kubo, N., Yamaguchi, M., Nagao, Y., Kawachi, N., Kikuchi, M., Arakawa, K., & Tashiro, M. (2020). Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. Sensors, 20(9), 2453. https://doi.org/10.3390/s20092453