Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Instruments
2.3. Synthesis of IL-PPy Composites
2.4. Preparation of Electrochemical Enzyme Sensor
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of IL-PPy Composites
3.2. Electrochemical Performance of C12-PPy-Au-HRP/GCE
3.3. Optimization of Detection Conditions
3.4. Catalytic Performances of the C12-PPy-Au-HRP/GCE
3.5. Selectivity and Stability C12-PPy-Au-HRP/GCE Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salimi, A.; Hallaj, R.; Soltanian, S.; Mamkhezri, H. Nanomolar Detection of Hydrogen Peroxide on Glassy Carbon Electrode Modified with Electrodeposited Cobalt Oxide Nanoparticles. Anal. Chim. Acta 2007, 594, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Usui, Y.; Sato, K.; Tanaka, M. Catalytic Dihydroxylation of Olefins with Hydrogen Peroxide: An Organic-Solvent- and Metal-Free System. Angew. Chem. Int. Ed. 2003, 42, 5623–5625. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Guo, Z.; Hu, Z.; Xue, Z.; Lu, X. Horseradish Peroxidase Supported on Porous Graphene as a Novel Sensing Platform for Detection of Hydrogen Peroxide in Living Cells Sensitively. Biosens. Bioelectron. 2017, 87, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bagal-Kestwal, D.R.; Pan, M.H.; Chiang, B.-H. Electrically Nanowired-Enzymes for Probe Modification and Sensor Fabrication. Biosens. Bioelectron. 2018, 121, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Xu, S.; Zeng, H.-Y.; Cao, X.; Dan Pan, A.; Xiao, G.-F.; Ding, P.-X. Hydrogen Peroxide Biosensor Based on Chitosan/2d Layered Double Hydroxide Composite for the Determination of H2O2. Bioelectrochemistry 2018, 123, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zeng, G.; Xu, P.; Lai, C.; Tang, L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem. Sci. 2017, 42, 914–930. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ding, S.; Li, L.; Ding, S.; Cao, Q.; Yang, J.; Xu, W.; Chen, A. One-Step Preparation of Direct Electrochemistry Hrp Biosensor Via Electrodeposition. J. Electrochem. Soc. 2017, 164, 710–714. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.-J.; Chen, H.-Y.; Lu, Z.-H. Amperometric Hydrogen Peroxide Biosensor with Sol–Gel/Chitosan Network-Like Film as Immobilization Matrix. Biosens. Bioelectron. 2003, 18, 335–343. [Google Scholar] [CrossRef]
- Boujakhrout, A.; Díez, P.; Sánchez, A.; Martínez-Ruíz, P.; Pingarrón, J.M.; Villalonga, R. Gold Nanoparticles-Decorated Silver-Bipyridine Nanobelts for the Construction of Mediatorless Hydrogen Peroxide Biosensor. J. Colloid Interface Sci. 2016, 482, 105–111. [Google Scholar] [CrossRef]
- Li, J.; Mei, H.; Zheng, W.; Pan, P.; Sun, X.J.; Li, F.; Guo, F.; Zhou, H.M.; Ma, J.Y.; Xu, X.X.; et al. A Novel Hydrogen Peroxide Biosensor Based on Hemoglobin-Collagen-Cnts Composite Nanofibers. Colloids Surf. B Biointerfaces 2014, 118, 77–82. [Google Scholar] [CrossRef]
- Yu, C.; Wang, L.; Li, W.; Zhu, C.; Bao, N.; Gu, H. Detection of Cellular H2O2 in Living Cells Based on Horseradish Peroxidase at the Interface of Au Nanoparticles Decorated Graphene Oxide. Sens. Actuators B Chem. 2015, 211, 17–24. [Google Scholar] [CrossRef]
- Ospina, E.; Armada, M.P.G.; Losada, J.; Alonso, B.; Casado, C.M. Polyferrocenyl Polycyclosiloxane/Gold Nanoparticles: An Efficient Electrocatalytic Platform for Immobilization and Direct Electrochemistry of Hrp. J. Electrochem. Soc. 2016, 163, H826–H833. [Google Scholar] [CrossRef]
- Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting Polymer Based Electrochemical Biosensors. Phys. Chem. Chem. Phys. PCCP 2016, 18, 8264–8277. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ma, Z. A Review on Amperometric Immunoassays for Tumor Markers Based on the Use of Hybrid Materials Consisting of Conducting Polymers and Noble Metal Nanomaterials. Microchim. Acta 2017, 184, 969–979. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Ju, L.; Wang, L.; Zhao, S. Polypyrrole Nanocapsules Via Interfacial Polymerization. Macromol. Res. 2010, 18, 648–652. [Google Scholar] [CrossRef]
- Goel, S.; Mazumdar, N.A.; Gupta, A. Synthesis and Characterization of Polypyrrole Nanofibers with Different Dopants. Polym. Adv. Technol. 2009, 21, 205–210. [Google Scholar] [CrossRef]
- Hou, L.; Yuan, C.; Li, D.; Yang, L.; Shen, L.; Zhang, F.; Zhang, X. Water/Ionic Liquid/Organic Three-Phase Interfacial Synthesis of Coral-Like Polypyrrole toward Enhanced Electrochemical Capacitance. Electrochim. Acta 2011, 56, 6049–6054. [Google Scholar] [CrossRef]
- Shen, M.; Han, Y.; Lin, X.; Ding, B.; Zhang, L.; Zhang, X. Preparation and Electrochemical Performances of Porous Polypyrrole Film by Interfacial Polymerization. J. Appl. Polym. Sci. 2012, 127, 2938–2944. [Google Scholar] [CrossRef]
- Hsu, S.-J.; Lin, I.J.B. Synthesis of Gold Nanosheets through Thermolysis of Mixtures of Long Chain 1-Alkylimidazole and Hydrogen Tetrachloroaurate(Iii). J. Chin. Chem. Soc. 2013, 56, 98–106. [Google Scholar] [CrossRef]
- Xia, J.; Li, H.; Luo, Z.; Wang, K.; Yin, S.; Yan, Y. Ionic Liquid-Assisted Hydrothermal Synthesis of Three-Dimensional Hierarchical Cuo Peachstone-Like Architectures. Appl. Surf. Sci. 2010, 256, 1871–1877. [Google Scholar] [CrossRef]
- Zhou, Y.; Schattka, J.H.; Antonietti, M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores Via a Sol−Gel Nanocasting Technique. Nano Lett. 2004, 4, 477–481. [Google Scholar] [CrossRef]
- Xiao, D.; Yuan, D.; He, H.; Pham-Huy, C.; Dai, H.; Wang, C.; Zhang, C. Mixed Hemimicelle Solid-Phase Extraction Based on Magnetic Carbon Nanotubes and Ionic Liquids for the Determination of Flavonoids. Carbon 2014, 72, 274–286. [Google Scholar] [CrossRef]
- Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. Electrical Conductivity Study on Micelle Formation of Long-Chain Imidazolium Ionic Liquids in Aqueous Solution. J. Colloid Interface Sci. 2007, 314, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Feng, F.; Ma, Z. Novel Electrochemical Redox-Active Species: One-Step Synthesis of Polyaniline Derivative-Au/Pd and Its Application for Multiplexed Immunoassay. Sci. Rep. 2015, 5, 16855. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Zhang, H.; Tamanna, T.; Yu, A. Ultrasensitive Immunoassay Based on Electrochemical Measurement of Enzymatically Produced Polyaniline. Anal. Chem. 2014, 86, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, Z. Fabrication of an Ultrasensitive Electrochemical Immunosensor for Cea Based on Conducting Long-Chain Polythiols. Biosens. Bioelectron. 2013, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Song, H.; Shu, H.; Wang, Z.; Zou, J.; Yang, N. In Situ Synthesized Gold Nanoparticles for Direct Electrochemistry of Horseradish Peroxidase. Colloids Surf. B Biointerfaces 2013, 104, 181–185. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Z.; Han, H.; Ma, Z. Graphene Oxide Reduced Directly by Redox Probes for Multiplexed Detection of Tumor Markers. J. Mater. Chem. B 2014, 2, 3292–3298. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Z. Au–Ionic Liquid Functionalized Reduced Graphene Oxide Immunosensing Platform for Simultaneous Electrochemical Detection of Multiple Analytes. Biosens. Bioelectron. 2014, 51, 184–190. [Google Scholar] [CrossRef]
- Rong, Q.; Han, H.; Feng, F.; Ma, Z. Network Nanostructured Polypyrrole Hydrogel/Au Composites as Enhanced Electrochemical Biosensing Platform. Sci. Rep. 2015, 5, 11440. [Google Scholar] [CrossRef]
- Pineda, E.G.; Presa, M.J.R.; Gervasi, C.A.; Bolzán, A.E. Tubular-Structured Polypyrrole Electrodes Decorated with Gold Nanoparticles for Electrochemical Sensing. J. Electroanal. Chem. 2018, 812, 28–36. [Google Scholar] [CrossRef]
- Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011, 6, 491. [Google Scholar] [CrossRef]
- Jiang, J.; Ai, L.; Li, L. Multifunctional Polypyrrole/Strontium Hexaferrite Composite Microspheres: Preparation, Characterization, and Properties. J. Phys. Chem. B 2009, 113, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, M. Synthesis, Characterization and Electrical Properties of Microtubules of Polypyrrole Synthesized by a Template-Free Method. J. Mater. Chem. 2001, 11, 404–407. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Z.; Dai, T.; Lu, Y. Facile Fabrication of Functional Polypyrrole Nanotubes Via a Reactive Self-Degraded Template. Macromol. Rapid Commun. 2005, 26, 1736–1740. [Google Scholar] [CrossRef]
- Bissessur, R.; Liu, P.K.Y.; Scully, S.F. Intercalation of Polypyrrole into Graphite Oxide. Synth. Met. 2006, 156, 1023–1027. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, T.; Han, X.; Peng, C.; Liu, H. Effect of Ionic Liquids Cnmimbr on Properties of Gemini Surfactant 12-3-12 Aqueous Solution. Ind. Eng. Chem. Res. 2010, 49, 8852–8857. [Google Scholar] [CrossRef]
- Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. Synthesis and Characterization of Polypyrrole/Graphite Oxide Composite by in Situ Emulsion Polymerization. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1329–1335. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, R.; Shang, Y.; Liu, H. Effects of Polymers on the Properties of Hydrogels Constructed Using Sodium Deoxycholate and Amino Acid. RSC Adv. 2018, 8, 8699–8708. [Google Scholar] [CrossRef]
- González-Iñiguez, J.C.; Ovando-Medina, V.M.; Jasso-Gastinel, C.F.; González, D.A.; Puig, J.E.; Mendizábal, E. Synthesis of Polypyrrole Nanoparticles by Batch and Semicontinuous Heterophase Polymerizations. Colloid Polym. Sci. 2014, 292, 1269–1275. [Google Scholar] [CrossRef]
- Lu, M.; Li, X.H.; Yu, B.Z.; Li, H.L. Electrochemical Behavior of Au Colloidal Electrode through Layer-by-Layer Self-Assembly. J. Colloid Interface Sci. 2002, 248, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, E. A Novel Hydrogen Peroxide Sensor Based on Horseradish Peroxidase Immobilized on Colloidal Au Modified Ito Electrode. Electrochem. Commun. 2004, 6, 225–229. [Google Scholar] [CrossRef]
- Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol−Gel Network. Anal. Chem. 2002, 74, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jia, W.-Z.; Qian, Q.-Y.; Zhou, Y.-G.; Xia, X.-H. Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity. Anal. Chem. 2009, 81, 3478–3484. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.-X.; Hu, S.-Q.; Gao, N.; Shen, G.-L.; Yu, R.-Q. An Amperometric Hydrogen Peroxide Biosensor Based on Immobilizing Horseradish Peroxidase to a Nano-Au Monolayer Supported by Sol–Gel Derived Carbon Ceramic Electrode. Bioelectrochemistry 2004, 65, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Luan, Q.; Yao, X.; Zhou, K. Single-Crystal Ceo2 Nanocubes Used for the Direct Electron Transfer and Electrocatalysis of Horseradish Peroxidase. Biosens. Bioelectron. 2009, 24, 2447–2451. [Google Scholar] [CrossRef]
- Xi, F.; Liu, L.; Chen, Z.; Lin, X. One-Step Construction of Reagentless Biosensor Based on Chitosan-Carbon Nanotubes-Nile Blue-Horseradish Peroxidase Biocomposite Formed by Electrodeposition. Talanta 2009, 78, 1077–1082. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, J.; Zeng, J.; Sun, L.; Xu, F.; Cao, Z.; Zhang, L.; Yang, D. Mesoporous Silica Hollow Sphere (Mshs) for the Bioelectrochemistry of Horseradish Peroxidase. Talanta 2009, 77, 943–947. [Google Scholar] [CrossRef]
- Xie, L.; Xu, Y.; Cao, X. Hydrogen Peroxide Biosensor Based on Hemoglobin Immobilized at Graphene, Flower-Like Zinc Oxide, and Gold Nanoparticles Nanocomposite Modified Glassy Carbon Electrode. Colloids Surf. B Biointerfaces 2013, 107, 245–250. [Google Scholar] [CrossRef]
- Zhao, X.; Mai, Z.; Kang, X.; Zou, X. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Based on Clay–Chitosan-Gold Nanoparticle Nanocomposite. Biosens. Bioelectron. 2008, 23, 1032–1038. [Google Scholar] [CrossRef]
- Sun, W.; Guo, Y.; Li, T.; Ju, X.; Lou, J.; Ruan, C. Electrochemistry of Horseradish Peroxidase Entrapped in Graphene and Dsdna Composite Modified Carbon Ionic Liquid Electrode. Electrochim. Acta 2012, 75, 381–386. [Google Scholar] [CrossRef]
- Chen, C.; Hong, X.; Xu, T.; Chen, A.; Lu, L.; Gao, Y. Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase onto a Poly(Aniline-Co-N-Methylthionine) Film. Synth. Metals 2016, 212, 123–130. [Google Scholar] [CrossRef]
Different H2O2 Sensors | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|
HRP–SiO2–modified Au electrode | 20–200 | 3 | [44] |
HRP in nano-Au/carbon ceramic electrode | 12.2–1100 | 6.1 | [45] |
HRP/CeO2/chitosan/GCE | 1–150 | 0.26 | [46] |
Chitosan–CNTs1–NB2–HRP | 1–240 | 0.1 | [47] |
HRP/MSHS3/Nafion/GCE | 0.39–140 | 0.12 | [48] |
C12-PPy-Au-HRP/GCE | 2–420 | 0.25 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wu, J.; Su, H.; Tu, Y.; Shang, Y.; He, Y.; Liu, H. Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing. Sensors 2019, 19, 640. https://doi.org/10.3390/s19030640
Li M, Wu J, Su H, Tu Y, Shang Y, He Y, Liu H. Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing. Sensors. 2019; 19(3):640. https://doi.org/10.3390/s19030640
Chicago/Turabian StyleLi, Meng, Jing Wu, Haiping Su, Yan Tu, Yazhuo Shang, Yifan He, and Honglai Liu. 2019. "Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing" Sensors 19, no. 3: 640. https://doi.org/10.3390/s19030640
APA StyleLi, M., Wu, J., Su, H., Tu, Y., Shang, Y., He, Y., & Liu, H. (2019). Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing. Sensors, 19(3), 640. https://doi.org/10.3390/s19030640