An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion
Abstract
:1. Introduction
2. Formulate Problem
2.1. System Description
2.2. The System Observability Analysis
3. Self-Calibration & Initial Alignment Algorithm
3.1. Self-Calibration Algorithm
3.2. Initial Alignment and Calibration Algorithm
3.3. Optimization-Based Attitude and Parameter Estimation
4. Simulation and Experiment
4.1. Simulation and Analysis
4.2. Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology; IET, Lavenham Press Ltd.: London, UK, 2004. [Google Scholar]
- Huang, W.; Fang, T.; Luo, L.; Zhao, L.; Che, F. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions. Sensors 2017, 17, 1551. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Li, J.; Chen, S. Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation Systems. IEEE Trans. Instrum. Meas. 2015, 64, 784–794. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y. A New Process Uncertainty Robust Student’s t based Kalman Filter for SINS/GPS Integration. IEEE Access 2017, 5, 14391–14404. [Google Scholar] [CrossRef]
- Lu, J.; Lei, C.; Li, B.; Wen, T. Improved calibration of IMU biases in analytic coarse alignment for AHRS. Meas. Sci. Technol. 2016, 27, 075105. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wang, X. Kalman-Filtering-Based In-Motion Coarse Alignment for Odometer-Aided SINS. IEEE Trans. Instrum. Meas. 2017, 66, 3364–3377. [Google Scholar] [CrossRef]
- Che, Y.; Wang, Q.; Gao, W.; Yu, F. An improved inertial frame alignment algorithm based on horizontal alignment information for marine SINS. Sensors 2015, 15, 25520–25545. [Google Scholar] [CrossRef] [PubMed]
- Silson, P.M.G. Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci. IEEE Trans. Instrum. Meas. 2011, 60, 1930–1941. [Google Scholar] [CrossRef]
- Hong, W.; Han, K.; Lee, C.; Paik, B. Three stage in flight alignment with covariance shaping adaptive filter for the strapdown inertial navigation system (SDINS). In Proceedings of the AIAA Guidance, Navigation and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar] [CrossRef]
- Yan, G.M.; Qin, Y.Y. Novel approach to in-flight alignment of micro-mechanical SINS/GPS with heading uncertainty. Chin. J. Sens. Act. 2007, 20, 238–242. [Google Scholar]
- Wang, Y.G.; Yang, J.S.; Yu, Y.; Lei, Y.L. On-the-move alignment for SINS based on odometer aiding. Syst. Eng. Electron. 2013, 35, 1060–1063. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, Y.; Wu, M.; Wu, W.; Hu, X.; Shen, L. INS/GPS Integration: Global Observability Analysis. IEEE Trans. Veh. Technol. 2009, 58, 1129–1142. [Google Scholar] [CrossRef]
- Ali, J.; Ushaq, M. A consistent and robust Kalman filter design for in-motion alignment of inertial navigation system. Measurement 2009, 42, 577–582. [Google Scholar] [CrossRef]
- Skog, I.; Händel, P. In-Car Positioning and Navigation Technologies—A Survey. IEEE Trans. Intell. Transp. Syst. 2009, 10, 4–21. [Google Scholar] [CrossRef]
- Georgy, J.; Karamat, T.; Iqbal, U.; Noureldin, A. Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solut. 2011, 15, 239–252. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Chang, L.; Zha, F. An improved optimal method for initial alignment. J. Navig. 2014, 67, 727–736. [Google Scholar] [CrossRef]
- Chang, G. Fast two-position initial alignment for SINS using velocity plus angular rate measurements. Adv. Space Res. 2015, 56, 1331–1342. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Wang, J.; Wu, M. A novel backtracking navigation scheme for autonomous underwater vehicles. Measurement 2014, 47, 496–504. [Google Scholar] [CrossRef]
- Pan, X.; Wu, Y. Underwater Doppler Navigation with Self-calibration. J. Navig. 2015, 69, 295–312. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wu, M.; Hu, X.; Hu, D. Self-calibration for Land Navigation Using Inertial Sensors and Odometer: Observability Analysis. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, X. Velocity/Position Integration Formula Part I: Application to In-Flight Coarse Alignment. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1006–1023. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Luo, L.; Fang, T.; Li, N.; Wang, G. An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method. Sensors 2018, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Guo, X.; Zhou, Z.; Wang, K. In-motion Alignment Algorithm for Vehicle Carried SINS Based on Odometer Aiding. J. Navig. 2017, 70, 1349–1366. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Hu, D. A New Technique for INS/GNSS Attitude and Parameter Estimation Using Online Optimization. IEEE Trans. Signal Process. 2014, 62, 2642–2655. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Li, J.; Li, K. Optimization-based alignment for strapdown inertial navigation system: Comparison and extension. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1697–1713. [Google Scholar] [CrossRef]
- Chang, L.; He, H.; Qin, F. In-motion Initial Alignment for Odometer Aided Strapdown Inertial Navigation System based on Attitude Estimation. IEEE Sens. J. 2017, 17, 766–773. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Isidori, A. Nonlinear Control Systems, 2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 1989. [Google Scholar]
- Bar-Itzhack, I.Y. REQUEST: A recursive QUEST algorithm for sequential attitude determination. J. Guid. Control Dyn. 1996, 19, 1034–1038. [Google Scholar] [CrossRef]
- Wahba, G. A least squares estimate of spacecraft attitude. SIAM Rev. 1965, 7, 409–411. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 1999. [Google Scholar]
Estimate Error | EKF | OBA |
---|---|---|
Attitude (min) | [0.0032 0.0042 0.0949]T | [−0.0023 −0.0023 0.0413]T |
Lever arm (m) | [−0.0071 0.0347 −0.0387]T | [0.0010 0.0037 −0.0032]T |
Estimate Error | EKF | OBA |
---|---|---|
Attitude (min) | [0.0134 0.0107 −0.2233]T | [−0.0130 −0.0087 0.0878]T |
Lever arm (m) | [−0.0242 0.0308 0.0028]T | [−0.0033 0.0005 −0.0004]T |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Ren, S.; Chen, X.; Wang, Z. An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion. Sensors 2018, 18, 2081. https://doi.org/10.3390/s18072081
Gao K, Ren S, Chen X, Wang Z. An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion. Sensors. 2018; 18(7):2081. https://doi.org/10.3390/s18072081
Chicago/Turabian StyleGao, Kang, Shunqing Ren, Xijun Chen, and Zhenhuan Wang. 2018. "An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion" Sensors 18, no. 7: 2081. https://doi.org/10.3390/s18072081
APA StyleGao, K., Ren, S., Chen, X., & Wang, Z. (2018). An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion. Sensors, 18(7), 2081. https://doi.org/10.3390/s18072081