Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
2.1. Field Data
- VB: volume of bole
- d1.30 : diameter at 1.30 m height (diameter at breast height, DBH)
- hB : height of bole
- Vb : volume of branch
- db : diameter of branch
- Lb : length of branch
- Vc : volume of crown
- hc : height of crown
- Lc : length of crown
- Y: biomass of a tree [kg]
- d1.30: diameter at 1.30 m height [cm]
2.2. Satellite Data and Preprocessing
2.3. Simple Reflectance, Vegetation Indices, and Grey-level Co-occurrence (GLCM) Texture Measures
2.4. Statistical Analysis
3. Results
3.1. Relationships between Biomass/Carbon and Parameters Derived from WorldView-2 Data
3.2. Stepwise Multiple Linear Regression Modeling
4. Discussion
5. Conclusions
- Texture measures seem to capture the varying forest canopy structures of the two observed forest strata much better than spectral reflectance or band ratios, except for the vegetation index EVI, which had a strong relationship with the biomass and carbon field data for non-degraded forest.
- A strong relationship was observed between the degraded forest stratum field data and the satellite data. The developed models consist of the texture measures: Correlation, Angular Second Moment, and Contrast, all derived from band 5. The best model for degraded forest achieves an adjusted R2 of 0.843 and a relative RMSE of 6.8% for biomass and carbon. Furthermore, the texture measures Mean derived from band 3 (green), band 4 (yellow), band 6 (red edge), and bands 7 and 8 (both NIR bands) indicate a strong relationship with biomass and carbon. The best model developed for degraded forest Ydeg can be written as follows:
- A slightly weaker relationship was observed between non-degraded forest stratum field data and the satellite data. EVI, using the second NIR band of the sensor, as well as Variance, Mean, and Correlation, derived from the newly-introduced coastal blue band, both NIR bands, and the red band, contributed to the best model (adjusted R2 = 0.816, relative RMSE = 11.8%). The best model developed for non-degraded forest Ylow can be written as follows:
- Estimation of tropical rainforest biomass/carbon based on very high resolution satellite data can be improved by (a) developing and applying forest stratum–specific models, and (b) including textural information in addition to spectral information.
- WorldView-2 data are a valuable data source for biomass estimation. In this study, the main asset of WorldView-2 proved to be the sensor’s additional spectral bands and the spatial resolution of 2.0 m. The main drawback of the sensor is the lack of a middle-infrared band. The panchromatic band with its very high spatial resolution of 0.5 m might provide important information regarding other forest parameters such as crown area, crown diameter, and DBH; however, this question was beyond the scope of this study and will have to be examined in the future.
Acknowledgments
References
- UNEP-WCMC. The Linkages between Biodiversity and Climate Change Mitigation; UNEP-WCMC: London, UK, 2008. Available online: http://www.cbd.int/doc/meetings/cc/ahteg-bdcc-02-02/official/ahteg-bdcc-02-02-05-en.pdf (accessed on 25 March 2012).
- UNFCCC. Outcome of the Work of the Ad Hoc Working Group on Long-Term Cooperative Action under the Convention—Policy Approaches and Positive Incentives on Issues Relating to Reducing Emissions from Deforestation and Forest Degradation in Developing Countries; and the Role of Conservation, Sustainable Management of Forests and Enhancement of Forest Carbon Stocks in Developing Countries. Proceedings of UNFCCC COP 16, Cancun, Mexico, 29 November–10 December 2010.
- UNFCCC. Methodological Guidance for Activities Relating to Reducing Emissions from Deforestation and Forest Degradation and The role of Conservation, Sustainable Management of Forests and Enhancement of Forest Carbon Stocks in Developing Countries, Draft Decision/CP.15; Advanced unedited version,; UNFCCC: Bonn, Germany, 2009; Available online: http://unfccc.int/files/na/application/pdf/cop15_ddc_auv.pdf (accessed on 25 July 2011).
- Ecoreserve. What is the UN-REDD Programme; Ecoreserve: San Francisco, CA, USA, 2010. Available online: http://www.ecoreserve.org/2010/06/02/what-is-the-un-redd-programme-reducing-emissions-from-deforestation-and-forest-degradation-in-developing-countries/ (accessed on 20 February 2011).
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens 2006, 27, 1297–1328. [Google Scholar]
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest carbon pools, sources, and sinks. Remote Sens. Environ 2003, 84, 393–410. [Google Scholar]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens 2005, 26, 2509–2525. [Google Scholar]
- Sarker, L.R.; Nichol, J.E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens. Environ 2011, 115, 968–977. [Google Scholar]
- Nelson, R.F.; Kimes, D.S.; Salas, W.A.; Routhier, M. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery. Bioscience 2000, 50, 419–431. [Google Scholar]
- Fuchs, H.; Magdon, P.; Kleinn, C.; Flessa, H. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sens. Environ 2009, 113, 518–531. [Google Scholar]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Progr. Phys. Geogr 2005, 29, 1–26. [Google Scholar]
- Tuominen, S.; Pekkarinen, A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens. Environ 2005, 94, 256–268. [Google Scholar]
- Eckert, S.; Rakoto Ratsomba, H.; Rakotondrasoa, L.O.; Rajoelison, L.G.; Ehrensperger, A. Deforestation and forest degradation monitoring and assessment of biomass and carbon stock of lowland rainforest in the Analjirofo region, Madagascar. For. Ecol. Manage 2010, 262, 1996–2007. [Google Scholar]
- White, F. The Vegetation of Africa, a Descriptive Memoire to Accompany UNESCO/AETFAT Vegetation Map of Africa; UNESCO: Paris, France, 1983. [Google Scholar]
- Humbert, H.; Cours-Darne, G. Carte Internationale du Tapis Végétal et des Conditions Écologiques; Travaux de la Section Scientifique et Technique, Institut Français: Pondichery, France, 1965; Volume 6, p. 162. [Google Scholar]
- Humbert, H. La Destruction d’une Flore Insulaire par le Feu. Principaux Aspects de la végétation à Madagascar. In Mémoires de L'Académie Malgache, Fascicule V; Pitot, G., Ed.; Tananarive, Madagascar, 1927. [Google Scholar]
- Rauh, W. Problems of Biological Conservation in Madagascar. In Plants and Islands; Bramweil, D., Ed.; Academic Press: London, UK, 1979; pp. 405–421. [Google Scholar]
- Jolly, A.; Jolly, R. Malagasy Economics and Conservation: A Tragedy without Villains. In Key Environments: Madagascar; Jolly, A., Oberlé, P., Roland, R., Eds.; Pergamon Press: Oxford, UK, 1984; pp. 211–217. [Google Scholar]
- Sussman, R.W.; Richard, A.F.; Ravelojaona, G. Madagascar: Current projects and problems in conservation. Primate Conserv 1985, 5, 53–59. [Google Scholar]
- Jenkins, M.D. Madagascar: An Environmental Profile; IUCN: Gland, Switzerland, 1987. [Google Scholar]
- Valentine, H.T.; Tritton, L.M.; Furnival, G.M. Subsampling trees for biomass, volume, or mineral content. For. Sci 1984, 30, 673–681. [Google Scholar]
- Gregoire, T.G.; Valentine, H.T.; Furnival, G.M. Sampling methods to estimate foliage and other characteristics of individual trees. Ecology 1995, 56, 1181–1194. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; FAO Forestry Paper 134; FAO: Rome, Italy, 1997. [Google Scholar]
- Rajoelison, L.G. Méthodologie d’Analyse Sylvicole dans une Forêt Naturelle; Akon’ny Ala No. 8 ; Bulletin du Département des Eaux & Forêts de l’Ecole Supérieure des Sciences Agronomiques; Université d’Antananarivo: Antananarivo, Madagascar, 1992; pp. 9–19. [Google Scholar]
- Rakotondrasoa, L.O. Etude du Stock de Carbone de la Forêt de Manompana: Nord Est de Madagascar; Mémoire de Diplômes d’Etudes Approfondies; Ecole Supérieure des Sciences Agronomiques, Département des Eaux et Forêts, Université d’Antananarivo: Antananarivo, Madagascar, 2009. [Google Scholar]
- Rakoto Ratsimba, H.; Rajoelison, L.G.; Rakotondrasoa, L.O.; Eckert, S.; Hergarten, C.; Ehrensperger, A. Dégradation des Forêts et Stock de Carbone dans la Biomasse Epigée de la Forêt dens Humide de Manompana: Nord Est de Madagascar. Presented at the International Scientific Conference on Technologies for Development, Lausanne, Switzerland, 8–10 February 2010.
- Houghton, J.T.; Meira Filho, L.G.; Lim, B.; Treanton, K.; Mamaty, I.; Bonduki, Y.; Griggs, D.J.; Callender, B.A. (Eds.) IPCC Guidelines for National Greenhouse Gas Inventories Volume 3; Greenhouse Gas Inventory Reference Manual (Revised ed.); IPCC/UK Meteorological Office: Bracknell, UK, 1996.
- DigitalGlobe. WorldView-2 Datasheet; DigitalGlobe: Longmont, CO, USA, 2010. Available online: http://dgl.us.neolane.net/res/dgl/survey/_8bandchallenge_resources.jsp?deliveryId=&id= (accessed on 28 July 2011).
- DigitalGlobe. Radiometric Use of WorldView-2 Imagery; Technical Note;. DigitalGlobe: Longmont, CO, USA, 2010. Available online: http://dgl.us.neolane.net/res/dgl/survey/_8bandchallenge.jsp. (accessed on 16 March 2011).
- Richter, R. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide 7.0); DLR-IB 565-01/09; DLR: Wessling, Germany, 2009. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For. Ecol. Manage 2004, 198, 149–167. [Google Scholar]
- Eckert, S. A Contribution to Sustainable Forest Management in Patagonia: Object-Oriented Classification and Forest Parameter Extraction based on ASTER and Landsat ETM+ Data. University of Zurich, Zurich, Switzerland, 2005. [Google Scholar]
- Kaufman, YJ.; Tanré, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens 1992, 30, 261–270. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ 1990, 34, 71–73. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351; NASA: Washington, DC, USA, 1973; 1, pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimation of soil-adjusted vegetation indices. Remote Sens. Environ 1996, 55, 95–107. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer-Verlag: Berlin, Germany, 1999; p. 240. [Google Scholar]
- Jordan, C.F. Derivation of leaf area index from quality of light on the floor. Ecology 1969, 50, 663–666. [Google Scholar]
- Kanemasu, E.T. Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Remote Sens. Environ 1974, 3, 43–47. [Google Scholar]
- Haralick, R.M.; Shanmugan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern 1973, 3, 610–621. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Van Leeuwen, W.J.D. The Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation. Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium, Noordwijk, The Nederlands, 3–8 August 1997; pp. 1966–1968.
- Leboeuf, A.; Beaudoin, A.; Forunier, R.A.; Guindon, L.; Luther, J.E.; Lambert, M.C. A shadow fraction method for mapping biomass of northern boreal black spruce forests using Quickbird imagery. Remote Sens. Environ 2007, 110, 488–500. [Google Scholar]
- Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J. Remote Sens 2000, 21, 1139–1157. [Google Scholar]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; Jean De Dieu, M. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens. Environ 2004, 90, 23–43. [Google Scholar]
- Castillo-Santiago, M.A.; Ricker, M.; De Jong, B.H.J. Estimation of tropical forest structure from SPOT-5 satellite images. Int. J. Remote Sens 2010, 31, 2767–2782. [Google Scholar]
- Foster, J.R.; Kingdon, C.C.; Townsend, P.A. Predicting Tropical Forest Carbon from EO-1 Hyperspectral Imagery in Noel Kempff Mercado National Park, Bolivia. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’02, Toronto, ON, Canada, 24–28 June 2002; 6, pp. 3108–3110.
Class | Characterization | Photo |
---|---|---|
Non-degraded forest | Non-degraded forest with a very low level of disturbance. Contains a high carbon stock, close to a climax situation. Dense and closed canopy cover representing all types of typical plants (trees, palm trees, ferns). | |
Degraded forest | Degraded forest with a higher level of disturbance, but still with a high diversity and quantity of plants. Reduced carbon stock. Canopy cover is open. | |
Secondary formations | Vegetation regrowth after several disturbances of high intensity (generally regrowth after slash-and-burn activities) | |
Other formations and non-forest | Other formations, generally very highly degraded, with species such as Asplenium spp. indicating extreme degradation. A condition reached after frequent heavy disturbances of high intensity. |
Parameter & Forest Stratum | No. | Min. | Max. | Mean | S.D. |
---|---|---|---|---|---|
Biomass, non-degraded | 20 | 323.304 | 1048.085 | 575.853 | 162.757 |
Biomass, degraded | 22 | 217.165 | 572.223 | 359.572 | 79.727 |
Carbon, non-degraded | 20 | 161.652 | 524.043 | 287.926 | 81.378 |
Carbon, degraded | 22 | 108.583 | 286.112 | 179.786 | 39.863 |
Parameter | Formula | References |
---|---|---|
Single bands | ||
WorldView-2 bands 1–8 | ||
Vegetation indices | ||
ARVI | (NIR – 2 × RED + BLUE)/(NIR + 2 × RED – BLUE) | [34] |
EVI | G × ((NIR – RED)/(NIR +C1 × RED – C2xBLUE + L)) | [35] |
IPVI | NIR/(NIR + RED) | [36] |
NDVI | (NIR – RED)/(NIR + RED) | [37] |
OSAVI | (NIR – RED)/(NIR + RED + Y) | [38] |
Image transform | ||
Principal components 1–8 (PC1–PC8) | [39] | |
Simple ratios | ||
RVI | NIR/RED | [40] |
NIR/GREEN | NIR/GREEN | |
GRVI | GREEN/RED | [41] |
GLCM texture measures (window sizes: 15 × 15 – 23 × 23 pixels) | ||
[42] | ||
Mean | ||
Variance | ||
Homogeneity | ||
Contrast | ||
Dissimilarity | ||
Entropy | ||
Angular Second Moment | ||
Correlation |
Stratum | Parameter | Pearson’s r | R2 |
---|---|---|---|
Non-degraded forest (n=20) | EVI 2 | 0.643** | 0.413 |
EVI 1 | 0.531* | 0.282 | |
PC 2 | 0.508* | 0.258 | |
Band 8 | 0.499* | 0.249 | |
Band 7 | 0.486* | 0.236 | |
Band 6 | 0.480* | 0.230 | |
PC 1 | 0.453* | 0.205 | |
GLCM23 Correlation band 2 | 0.454* | 0.206 | |
Degraded forest (n=22) | GLCM15 Correlation band 5 | 0.766** | 0.587 |
GLCM15 Mean band 6 | 0.758** | 0.575 | |
GLCM15 Mean band 8 | 0.723** | 0.523 | |
GLCM15 Mean band 7 | 0.719** | 0.517 | |
GLCM15 Mean band 4 | 0.614** | 0.377 | |
GLCM15 Mean band 3 | 0.604** | 0.365 | |
GLCM17 Correlation band 5 | 0.718** | 0.516 | |
GLCM17 Mean band 6 | 0.754** | 0.569 | |
GLCM17 Mean band 8 | 0.718** | 0.516 | |
GLCM17 Mean band 7 | 0.714** | 0.510 | |
GLCM17 Mean band 4 | 0.611** | 0.373 | |
GLCM17 Mean band 3 | 0.601** | 0.361 | |
GLCM19 Correlation band 5 | 0.637** | 0.406 | |
GLCM19 Mean band 6 | 0.750** | 0.563 | |
GLCM19 Mean band 8 | 0.713** | 0.508 | |
GLCM19 Mean band 7 | 0.709** | 0.503 | |
GLCM19 Mean band 4 | 0.608** | 0.370 | |
GLCM19 Mean band 3 | 0.598** | 0.358 | |
GLCM21 Correlation band 5 | 0.637** | 0.406 | |
GLCM21 Mean band 6 | 0.750** | 0.563 | |
GLCM21 Mean Band 8 | 0.713** | 0.508 | |
GLCM21 Mean band 7 | 0.709** | 0.503 | |
GLCM21 Mean band 4 | 0.608** | 0.370 | |
GLCM21 Mean band 3 | 0.598** | 0.358 | |
GLCM23 Correlation band 5 | 0.543** | 0.295 | |
GLCM23 Mean band 6 | 0.746** | 0.557 | |
GLCM23 Mean band 8 | 0.709** | 0.503 | |
GLCM23 Mean band 7 | 0.705** | 0.497 | |
GLCM23 Mean band 4 | 0.606** | 0.367 | |
GLCM23 Mean band 3 | 0.596** | 0.355 |
Model (non-degraded forest) (bootstrapping No. of samples) Variables | R2 | Adj. R2 | RMSE [t/ha] (Biomass) | RMSE [t/ha] (Carbon) | Relative RMSE [%] (Carbon/Biomass) | Tolerance (>0.1) | VIF (<10) |
---|---|---|---|---|---|---|---|
1 (n = 30) | 0.413 | 0.381 | 128.08 | 64.04 | 21.74 | ||
EVI2 | 1.000 | 1.000 | |||||
2 (n = 60) | 0.639 | 0.596 | 103.40 | 51.70 | 17.55 | ||
EVI2 | 0.830 | 1.204 | |||||
GLCM23 Variance band 7 | 0.830 | 1.204 | |||||
3 (n=100) | 0.746 | 0.699 | 89.30 | 44.65 | 15.16 | ||
EVI2 | 0.826 | 1.210 | |||||
GLCM23 Variance band 7 | 0.824 | 1.213 | |||||
GLCM21 Variance band 1 | 0.980 | 1.021 | |||||
4 (n=150) | 0.812 | 0.762 | 79.41 | 39.71 | 13.48 | ||
EVI2 | 0.826 | 1.211 | |||||
GLCM23 Variance band 7 | 0.804 | 1.244 | |||||
GLCM21 Variance band 1 | 0.971 | 1.030 | |||||
GLCM23 Mean band 8 | 0.962 | 1.039 | |||||
5 (n=210) | 0.865 | 0.816 | 69.77 | 34.89 | 11.84 | ||
EVI2 | 0.730 | 1.370 | |||||
GLCM23 Variance band 7 | 0.742 | 1.349 | |||||
GLCM21 Variance band 1 | 0.970 | 1.031 | |||||
GLCM23 Mean band 8 | 0.782 | 1.279 | |||||
GLCM23 Correlation band 5 | 0.597 | 1.675 |
Model (degraded forest) (bootstrapping no of samples) Variables | R2 | Adj. R2 | RMSE [t/ha] (Biomass) | RMSE [t/ha] (Carbon) | Relative RMSE [%] | Tolerance (>0.1) | VIF (<10) |
---|---|---|---|---|---|---|---|
1 (n=30) | 0.587 | 0.567 | 52.49 | 26.24 | 11.33 | ||
GLCM15 Correlation band 5 | 1.000 | 1.000 | |||||
2 (n=60) | |||||||
GLCM15 Correlation band 5 | 0.816 | 0.796 | 36.00 | 18.00 | 7.77 | 0.598 | 1.673 |
GLCM21 Angular Second Moment band 5 | 0.598 | 1.673 | |||||
3 (n=100) | 0.865 | 0.843 | 31.60 | 15.80 | 6.82 | ||
GLCM15 Correlation band 5 | 0.594 | 1.683 | |||||
GLCM21 Angular Second Moment band 5 | 0.596 | 1.676 | |||||
GLCM23 Contrast band 5 | 0.994 | 1.006 |
Share and Cite
Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sens. 2012, 4, 810-829. https://doi.org/10.3390/rs4040810
Eckert S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sensing. 2012; 4(4):810-829. https://doi.org/10.3390/rs4040810
Chicago/Turabian StyleEckert, Sandra. 2012. "Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data" Remote Sensing 4, no. 4: 810-829. https://doi.org/10.3390/rs4040810
APA StyleEckert, S. (2012). Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sensing, 4(4), 810-829. https://doi.org/10.3390/rs4040810