The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images
Abstract
:1. Introduction
2. Study Sites and Reference Data
3. Remote Sensing Data
4. Methods
4.1. Preprocessing of SAR Data
4.2. Data Analysis
4.2.1. Location Accuracy of Orthorectified SAR Data
4.2.2. Classification of Coniferous- and Deciduous-Dominated Forest
5. Results
5.1. Location Accuracy of Orthorectified SAR Data
5.2. Classification of Coniferous- and Deciduous-Dominated Forest
6. Discussion
7. Conclusion
Appendices
Site | Biberach | Pforzheim | ||||
---|---|---|---|---|---|---|
Reference | ||||||
Prediction | Coniferous | Deciduous | Row total | Coniferous | Deciduous | Row total |
Coniferous | 210 | 47 | 257 | 155 | 57 | 212 |
Deciduous | 31 | 72 | 103 | 48 | 105 | 153 |
Column total | 241 | 119 | 360 | 203 | 162 | 365 |
Producer’s accuracy (%) | 87.1 | 60.5 | 76.4 | 64.8 | ||
User’s accuracy (%) | 81.7 | 69.9 | 73.1 | 68.6 | ||
Overall accuracy (%) | 78.3 | 71.2 | ||||
Kappa coefficient (κ) | 0.49 | 0.41 |
Biberach | Pforzheim | |||||
---|---|---|---|---|---|---|
Estimate | Std. Error | p-value | Estimate | Std. Error | p-value | |
Intercept | 1.31 | 6.28 | 0.83 | 21.6 | 4.36 | <0.01 |
σ0 leaf-off (mean) | −0.35 | 0.43 | 0.42 | 1.46 | 0.32 | <0.01 |
σ0 leaf-on (mean) | −0.61 | 0.44 | 0.17 | 1.17 | 0.28 | <0.01 |
leaf-off * leaf-on (mean) | −0.07 | 0.03 | 0.01 | 0.07 | 0.02 | <0.01 |
Biberach | Pforzheim | |||
---|---|---|---|---|
Date | 27.03.2009 | 09.08.2009 | 25.07.2008 | 13.03.2009 |
Time | 17:08:26 | 05:34:55 | 05:43:19 | 05:43:19 |
Polarization | HH and VV | HH | HH | HH |
Orbital direction | Ascending | Descending | Descending | Descending |
Mean and range of incidence angles (°) | 39.3 (38.9–39.8) | 37.5 (37–37.9) | 31.7 (31.1–32.2) | 31.7 (31.1–32.2) |
Slant range resolution (m) | 1.17 | 1.17 | 1.17 | 1.17 |
Projected spacing azimuth (m) | 1.81 | 0.86 | 0.86 | 0.88 |
DEM | RMSE (m) | |||||
---|---|---|---|---|---|---|
Biberach | Pforzheim | |||||
x | y | Euclidian Distance | x | y | Euclidian Distance | |
ALS DSM | 9 | 7 | 11 | 7 | 5 | 9 |
ALS DTM | 10 | 7 | 12 | 6 | 4 | 7 |
SRTM DEM | 15 | 10 | 15 | 29 | 8 | 25 |
Biberach | Pforzheim | |||||
---|---|---|---|---|---|---|
OA (%) | κ | κ conf. int. (level = 0.95) | OA (%) | κ | κ conf. int. (level = 0.95) | |
Leaf-off | ||||||
ALS DTM | 71.1 | 0.25 | 0.13–0.38 | 67.9 | 0.34 | 0.25–0.44 |
ALS DSM | 70.8 | 0.25 | 0.13–0.37 | 68.5 | 0.35 | 0.26–0.45 |
SRTM | 67.8 | 0.15 | 0.02–0.27 | 66.6 | 0.32 | 0.21–0.42 |
Leaf-on | ||||||
ALS DTM | 70.0 | 0.18 | 0.05–0.31 | 64.1 | 0.26 | 0.16–0.36 |
ALS DSM | 70.0 | 0.22 | 0.09–0.34 | 60.5 | 0.18 | 0.07–0.28 |
SRTM | 66.9 | 0.01 | (−0.1) −0.16 | 58.1 | 0.09 | (−0.1) −0.20 |
Combination of leaf-off and leaf-on | ||||||
ALS DTM | 78.3 | 0.49 | 0.38–0.58 | 71.2 | 0.41 | 0.32–0.51 |
ALS DSM | 76.1 | 0.44 | 0.35–0.55 | 68.2 | 0.35 | 0.25–0.45 |
SRTM | 70.0 | 0.23 | 0.11–0.35 | 66.6 | 0.32 | 0.21–0.42 |
Acknowledgments
References
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manage 2010, 259, 698–709. [Google Scholar]
- Deshayes, M.; Guyon, D.; Jean, H.; Stach, N.; Jolly, A.; Hagolle, O. The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Ann. For. Sci 2006, 63, 579–595. [Google Scholar]
- Ciesla, W. Remote Sensing in Forest Health Protection; FHTET Report No. 00-03; USDA Forest service, Remote sensing Applications Center Salt Lake City, UT and Forest Health Technology Enterprise Team: Fort Collins, CO, USA, 2000; pp. 197–211. [Google Scholar]
- Perko, R.; Raggam, H.; Deutsche, J.; Gutjahr, K.; Schardt, M. Forest assessment using high resolution SAR data in X-band. Remote Sens 2011, 3, 792–815. [Google Scholar]
- Wulder, M.; White, J.; Coops, N.; Han, T.; Alvarez, M.; Butson, C.; Yuan, X. A Procedure for Mapping and Monitoring Mountain Pine Beetle Red Attack Forest Damage Using Landsat Imagery. BC-X-404; Information Report, Pacific Forestry Centre. 2006, pp. 1–40. http://www.for.gov.bc.ca/hfd/library/documents/bib96701.pdf (accessed on 17 January 2011).
- Ranson, K.; Kovacs, K.; Sun, G.; Kharuk, V. Disturbance recognition in the boreal forest using radar and Landsat-7. Can. J. Remote Sens 2003, 29, 271–285. [Google Scholar]
- Knowlton, D.; Hoffer, R. Radar Imagery for Forest Cover Mapping. Proceedings of the 7th International Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 23–26 June 1981; pp. 626–632.
- Leckie, D.; Ranson, K.J. Forestry Applications Using Imaging Radar. In Principles and Applications of Imaging Radar (Manual of Remote Sensing), 3rd ed.; Henderson, F., Lewis, A., Eds.; John Wiley & Sons Inc: New York, NY, USA, 1998; pp. 435–509. [Google Scholar]
- Thiel, C.; Santoro, M.; Cartus, O.; Thiel, C.; Riedel, T.; Schmullius, C. Perspectives of SAR based Forest Cover, Forest Cover Change and Biomass Mapping. In The Kyoto Protocol: Economic Assessments, Implementation Mechanisms, and Policy Implications; Vasser, C.P., Ed.; Nova Science Publishers Inc: Hauppauge, NY, USA, 2009; pp. 13–56. [Google Scholar]
- Churchill, P.; Keech, M. SAR Investigations of Thetford Forest. JRC/ESA SAR 580 Investigators Final Workshop, Ispra, Italy, 15–17 May 1984; pp. 533–550.
- Leckie, D. Synergism of SAR and visible/infrared data for forest type discrimination. Photogramm. Eng. Remote Sensing 1990, 56, 1237–1246. [Google Scholar]
- Rignot, E.; Williams, C.; Way, J.; Viereck, L. Mapping of forest types in Alaskan boreal forest using SAR imagery. IEEE Trans. Geoci. Remote Sens 1994, 32, 1051–1059. [Google Scholar]
- Dobson, M.; Ulaby, F.; Pierce, L. Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote Sens. Environ 1995, 51, 199–214. [Google Scholar]
- Saatchi, S.; Rignot, E. Classification of boreal forest cover types using SAR images. Remote Sens. Environ 1997, 60, 270–281. [Google Scholar]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm 2010, 65, 581–590. [Google Scholar]
- Roth, A.; Eineder, M.; Schättler, B. TerraSAR-X: A New Perspective for Applications Requiring High Resolution Spaceborne SAR Data. Proceedings of the Joint ISPRS 6 EarSel Workshop on High Resolution Mapping from Space 2003, Hannover, Germany, 6–8 October 2003; pp. 1–4.
- Düring, R.; Koudogbo, F.; Weber, M. TerraSAR-X and TanDEM-X: Revolution in Spaceborne Radar. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII. http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/37.pdf (accessed 17, January 2011).
- Breidenbach, J.; Ortiz, S.; Reich, M. Forest monitoring with TerraSAR-X: first results. Eur. J. For. Res 2010, 129, 813–823. [Google Scholar]
- Karjalainen, M.; Kankare, V.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote Sens. Environ 2011. [Google Scholar] [CrossRef]
- Holopainen, M.; Haapanen, R.; Karjalainen, M.; Vastaranta, M.; Hyyppä, J.; Yu, X.; Tuominen, S.; Hyyppä, H. Comparing accuracy of airborne laser scanning and TerraSAR-X radar images in the estimation of plot-level forest variables. Remote Sens 2010, 2, 432–445. [Google Scholar]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing, Inc.: Boston, MA, USA, 2004; pp. 43–72. [Google Scholar]
- Beaudoin, A.; Stussi, N.; Troufleau, D.; Desbois, N.; Piet, L.; Deshayes, M. On the Use of ERS-1 SAR Data over Hilly Terrain: Necessity of Radiometric Corrections for Thematic Applications. Proceedings of 1995 International IEEE Geoscience and Remote Sensing Symposium, Firenze, Italy, 10–14 July 1995; 3, pp. 2179–2182.
- Saundercock, G. The geocoding of synthetic aperture radar imagery and an application to nautical charting. Photogramm. Rec 1995, 15, 57–64. [Google Scholar]
- Koppe, W.; Kiefl, N.; Hennig, S.; Janoth, J. Validation of Pixel Location Accuracy of Orthorectified TerraSAR-X Products. EUSAR 2010, Aachen, Germany, 7–10 June 2010; pp. 106–108.
- FoGIS-InFoGIS (Forestry Geographic Information System). Available online: http://www.disy.net/referenzen-alt/referenzen-fachgebiet/raeumliche-planung/infogis.html (accessed on 17 January 2011).
- Forst BW (Forest Service of Baden-Württemberg). Forest Inventory in the Forest District of Pforzheim. Internal Digital Database. 2005. Available online: http://www.forstbw.de/landesbetrieb-forstbw/schuetzenbewahren/waldinventuren/forsteinrichtung/ (accessed on 17 January 2011).
- Forst BW (Forest Service of Baden-Württemberg). Forest Inventory in the Forest District of Biberach. Internal Digital Database. 2003. Available online: http://www.forstbw.de/landesbetrieb-forstbw/schuetzenbewahren/waldinventuren/forsteinrichtung/ (accessed on 17 January 2011).
- Breidenbach, J.; Nothdurft, A.; Kändler, G. Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data. Eur. J. For. Res 2010, 129, 833–846. [Google Scholar]
- DLR (Deutsches Zentrum für Luft und Raumfahrt), TerraSAR-X, Ground Segment, Basic Products Specification Document; DLR: Oberpfaffenhofen, Germany, 2006; pp. 1–45.
- DWD. Deutscher Wetterdienst. WESTE (Wetterdaten und-Statistiken Express)-Allgemein. 2009. Available online: http://www.dwd-shop.de/details/1122d.html (accessed on 17 January 2011).
- LTZ. Landwirtschaftliches Technologiezentrum Augustenberg. Wetterdaten-Infoservice Pflanzenbau & Pflanzenschutz. 2009. Available online: http://www.wetterbw.de/wetterdaten/tabelle/tageswerte/index.php?Stations_ID=99&Jahr=2009&Anzeigen=OK (accessed on 17 January 2011).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 17 January 2011).
- Schleyer, A. Das Laserscan-DGM von Baden-Württemberg. In Photogrammetric Week 01; Fritsch, D., Spiller, R., Eds.; Wichmann: Heidelberg, Germany, 2001; pp. 217–225. [Google Scholar]
- Ihde, J.; Habrich, H.; Hornik, H.; Pahle, K.; Schlüter, W. Precise Positioning on Global and Regional Scales, National Report of the Federal Republic of Germany on the Geodetic Activities in the years 1999–2003. 2003; 11–19.
- Weinacker, H.; Koch, B.; Weinacker, R. TREESVIS: A Software System for Simultaneous ED-Real-Time Visualisation of DTM, DSM, Laser Raw Data, Multispectral Data, Simple Tree and Building Models. Proceedings of the ISPRS Working Group VIII (2), Freiburg, Germany, October 2004; pp. 90–95.
- Raney, K. Radar Fundamentals: Technical Perspective. In Principles and Applications of Imaging Radar (Manual of Remote Sensing), 3rd ed.; Henderson, F., Lewis, A., Eds.; John Wiley & Sons Inc: New York, NY, USA, 1998; pp. 32–45. [Google Scholar]
- Ranney, K.; Tran, C. Effects of registration error on multi-look averaged data. Proc. SPIE 2005, 5794, 447–458. [Google Scholar]
- ESA. Array Systems Computing Inc. NEST User Manual. Available online: http://nest.s3.amazonaws.com/docs/nest_user_manual-4B.pdf (accessed on 27 January 2012).
- Wegmüller, U. Automated Terrain Corrected SAR Geocoding. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS ’99), Hamburg, Germany, 28 June–2 July 1999; pp. 1712–1714.
- Santoro, M.; Fransson, J.; Erikkson, L.; Magnusson, M.; Ulander, L.; Olsson, H. Signatures of ALOS PALSAR L-Band backscatter in Swedish forest. IEEE Trans. Geosci. Remote Sens 2009, 47, 4001–4019. [Google Scholar]
- Stussi, N.; Beaudoi, A.; Castel, T.; Gigord, P. Radiometric Correction of Multi-Configuration Space-borne SAR Data over Hilly Terrain. Proceedings of International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, Toulouse, France, 10–13 October 1995; pp. 469–478.
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Santoro, M. Gamma SAR and Interferometry Software; Gamma AG: Bern, Switzerland, 2006. [Google Scholar]
- ATKIS (Amtliche Topographisch-Kartographische Informationssystem). Official Map 1:25000. Available online: http://www.lv-bw.de/lvshop2/start_ie.asp?openkey=PRODUKTE&keyinfo=&os=Win32&mapw=600 (accessed on 13 January 2012).
- Venables, W.; Ripley, B. Modern Applied Statistics with S. Statistics and Computing, 4th ed.; Springer: New York, NY, USA, 2002; pp. 183–208. [Google Scholar]
- McCullagh, P.; Nelder, J. Generalized Linear Models, 2nd ed.; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Trevor, H.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA; p. 2009.
- Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar]
- R (Development Core Team). R a Language and Environment for Statistical Compution. 2010. Available online: http://cran.r-project.org/doc/manuals/refman.pdf (accessed on 17 January 2011).
- Golub, G.; Heath, M.; Wahba, G. Generalised cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21, 215–223. [Google Scholar]
- Nonaka, T.; Ishizuka, Y.; Yamane, N.; Shibayama, T.; Takagishi, S.; Sasagawa, T. Evaluation of the geometric accuracy of TerraSAR-X. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, XXXVII(B7), 135–140. [Google Scholar]
- Werner, C.; Strozzi, T.; Wegmüler, U.; Wiesmann, A. SAR Geocoding and Multi-Sensor Image Registration. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; 2, pp. 902–904.
- Kobayashi, Y.; Sarabandi, K.; Pierce, L.; Dobson, M. An evaluation of the JPL TOPSAR for extracting tree heights. IEEE Trans. Geosci. Remote Sens 2000, 38, 2446–2454. [Google Scholar]
- Izzawati, I.; Wallington, E.; Woodhouse, I. Forest height retrieval from commercial X-band SAR products. IEEE Trans. Geosci. Remote Sens 2006, 44, 863–870. [Google Scholar]
- Fritz, T.; Breit, H.; Eineder, M. TerraSAR-X Products Tips and Tricks. Proceedings of 3rd TerraSAR-X Workshop, Oberpfaffenhofen, Germany, 26 November 2008.
- Loew, A.; Mauser, W. Generation of geometrically and radiometrically terrain corrected SAR image products. Remote Sens. Environ 2007, 106, 337–349. [Google Scholar]
- Pierce, L.; Bergen, K.; Dobson, M.; Ulaby, F. Multitemporal land-cover classification using SIR-C/X-SAR imagery. Remote Sens. Environ 1997, 64, 20–23. [Google Scholar]
- Hoekman, D. Radar backscatter of forest stands. Int. J. Remote Sens 1985, 6, 325–343. [Google Scholar]
- Dobson, M.; Pierce, L.; McDonald, K.; Sharik, T. Seasonal Change in Radar Backscatter from Mixed Conifer and Hardwood Forest in Northern Michigan. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS ’91), Helsinki, Finland, June 1991; pp. 1121–1124.
- Ulaby, F.; Brisco, B.; Dobson, C. Improved spatial mapping of rainfall events with spaceborne SAR imagery. IEEE Trans. Geosci. Remote Sens 1983, 21, 118–121. [Google Scholar]
- Fischer, J.; Brown, R.; Brisco, B. The Effects of Changes in Soil Moisture and Rainfall on SAR Data Crop Classification. Proceedings of Fifteenth Canadian Symposium of Remote Sensing, Toronto, ON, Canada, 1–4 June 1992; pp. 221–226.
- Gillespie, T.; Brisco, B.; Brown, R.; Sofko, G. Radar detection of a dew event in wheat. Remote Sens. Environ 1990, 33, 151–156. [Google Scholar]
- Rignot, E.; Way, J.; McDonald, K.; Viereck, L.; Williams, C.; Adams, C.; Wood, W.; Shi, J. Monitoring of environmental conditions in Taiga forest using ERS-1 SAR. Remote Sens. Environ 1994, 49, 145–154. [Google Scholar]
- De Jong, J.; Klaassen, W.; Kuiper, P. Monitoring of rain water storage in forest with satellite radar. IEEE Trans. Geosci. Remote Sens 2002, 40, 338–347. [Google Scholar]
Share and Cite
Ortiz, S.M.; Breidenbach, J.; Knuth, R.; Kändler, G. The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images. Remote Sens. 2012, 4, 661-681. https://doi.org/10.3390/rs4030661
Ortiz SM, Breidenbach J, Knuth R, Kändler G. The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images. Remote Sensing. 2012; 4(3):661-681. https://doi.org/10.3390/rs4030661
Chicago/Turabian StyleOrtiz, Sonia M., Johannes Breidenbach, Ralf Knuth, and Gerald Kändler. 2012. "The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images" Remote Sensing 4, no. 3: 661-681. https://doi.org/10.3390/rs4030661
APA StyleOrtiz, S. M., Breidenbach, J., Knuth, R., & Kändler, G. (2012). The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images. Remote Sensing, 4(3), 661-681. https://doi.org/10.3390/rs4030661