Machine Learning Model-Based Retrieval of Temperature and Relative Humidity Profiles Measured by Microwave Radiometer
Abstract
:1. Introduction
2. Data and Methods
2.1. Location of Observation Stations
2.2. Datasets
2.3. Data Preprocessing
- (1)
- The measured data are classified as rainy-day data if the RH is greater than 85% from the ground to the height of 600 m.
- (2)
- The data are classified as cloudy-sky data if the RH is less than 85% near the surface but greater than 85% in the upper atmosphere [20].
- (3)
- The data are classified as clear-sky data if the RH is always less than 85% from the ground to any altitude level.
2.4. Methods
2.4.1. Deep Learning (DL)
2.4.2. Gradient Boosting Machine (GBM)
2.4.3. Extreme Gradient Boosting (XGBoost)
2.4.4. Random Forest (RF)
2.4.5. A 10-Fold Cross-Validation Method
3. Results and Case Illustration
3.1. A 10-Fold Cross-Validation with Training Samples
3.2. Validation of Four Models with the Radiosonde Data
3.2.1. Scatter Density Variation
3.2.2. Bias and RMSEs Variation with Altitude
3.3. Case Illustration
3.3.1. Case Analysis for DL Temperature and Machine Learning RH
3.3.2. ML RH for Application before Precipitation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diao, M.H.; Jumbma, L.; Sheffield, J.; Wood, E.F.; Zondlo, M.A. Validation of AIRS/AMSU-A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N–67°S. J. Geophys. Res. Atmos. 2013, 118, 6816–6836. [Google Scholar] [CrossRef] [Green Version]
- Osei, M.A.; Amekudzi, L.K.; Ferguson, C.R.; Danuor, S.K. Inter-comparison of AIRS temperature and relative humidity profiles with AMMA and DACCIWA radiosonde observations over West Africa. Remote Sens. 2020, 12, 2631. [Google Scholar] [CrossRef]
- Liu, H.Y.; Li, J.; Cao, X.Y.; Xiong, B. Characteristics of the Atmosphere Remote Sensed by the Ground-Based 12-Channel Radiometer. Remote Sens. Technol. Appl. 2007, 22, 222–229. [Google Scholar]
- Li, J.; Zeng, Q.C. Infrared Remote Sensing of Clear Atmosphere and Related Inversion Problem. Part II: Experimental Study. Chin. J. Atmos. Sci. 1997, 21, 214–222. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Huang, S.Y. A Preliminary Study of the Retrieval Methods for Atmosphere and Humidity profiles. Chin. Remote Sens. Resour. 2008, 20, 23–26. [Google Scholar] [CrossRef]
- Zeng, Q.; Qing, Z.P.; Zhu, M.; Zhang, F.G.; Wang, H.; Liu, Y.; Shi, Z.; Yu, Q. Application of Random Forest Algorithm on Tornado Detection. Remote Sens. 2022, 14, 2909. [Google Scholar] [CrossRef]
- Ye, X.L.; Chen, Y.; Yang, S.; Yang, X.; Kan, Y.J. Quality Control method of single station surface air temperature data based on EEMD-CES. Trans. Atmos. Sci. 2019, 42, 390–398. [Google Scholar] [CrossRef]
- Cimini, C.; Marzano, F.S.; Ciotti, P.; Cimini, D.; Westwater, E.R.; Han, Y.; Keihm, S.J.; Ware, R. Atmospheric Microwave Radiative Models Study Based on Ground-Based Multichannel Radiometer Observations in the 20–60 GHz Band. In Proceedings of the Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, NM, USA, 22–26 March 2004. [Google Scholar]
- Yao, Z.G.; Chen, H.B. Retrieval of Atmospheric Temperature Profiles with Neural Network Inversion of Microwave Radiometer Data in 6 Channels Near 118.75 GHz. J. Meteorol. Sci. 2006, 26, 252–259. [Google Scholar]
- Liu, Y.Y.; Mao, J.T.; Liu, J.; Li, F. Research of BP Neural Network for Microwave Radiometer Remote Sensing Retrieval of Temperature, Relative Humidity, Cloud Liquid Water Profiles. J. Plateau. Meteorol. 2010, 29, 1514–1523. [Google Scholar]
- Wang, Z.H.; Li, Q.; Chu, Y.L.; Zhu, Y.Y. Environmental Thermal Radiation Interference on Atmospheric Brightness Temperature Measurement with Ground-based K-band Microwave Radiometer. J. Appl. Meteorol. Sci. 2014, 25, 711–721. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Y.F.; Zhang, G.X.; Yang, L.M. The Principle and Error Analysis of Microwave Radiometer MP-3000A. Desert Oasis Meteorol. 2009, 3, 54–57. [Google Scholar]
- Che, Y.F.; Ma, S.Q.; Xing, F.H.; Li, S.T.; Dai, Y.R. Cloud Influence on Atmospheric Humidity Profile Retrieval by Ground-based Microwave Radiometer. J. Appl. Meteorol. Sci. 2015, 26, 193–202. [Google Scholar] [CrossRef]
- Pan, Y.; Lei, L.F.; Li, Q.; Jiang, S.L.; Wang, Z.H. Analysis on the solar influence to brightness temperatures observed with a ground-based microwave radiometer. J. Atmos. Sol. Terr. Phys. 2021, 222, 105725. [Google Scholar] [CrossRef]
- Qi, Y.J.; Fan, S.Y.; Mao, J.J.; Li, B.; Guo, C.W.; Zhang, S.T. Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere 2021, 12, 551. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Li, B.; Mao, J.; Lin, D. Assimilation of Ground-Based Microwave Radiometer on Heavy Rainfall Forecast in Beijing. Atmosphere 2022, 13, 74. [Google Scholar] [CrossRef]
- Li, Q.; Wei, M.; Wang, Z.; Jiang, S.; Chu, Y. Improving the Retrieval of Cloudy Atmospheric Profiles from Brightness Temperatures Observed with a Ground-Based Microwave Radiometer. Atmosphere 2021, 12, 648. [Google Scholar] [CrossRef]
- Hogg, D.C.; Decker, M.T.; Guiraud, F.O.; Earnshaw, K.B.; Merritt, D.A.; Moran, K.P.; Sweezy, W.B.; Strauch, R.G.; Westwater, E.R.; Little, C.G. An Automatic Profiler of the Temperature, Wind and Humidity in the Troposphere. J. Appl. Meteorol. Climatol. 1983, 22, 807–831. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding—Theory and Practice; World Scientific: Singapore, 2008. [Google Scholar]
- Che, Y.F.; Ma, S.Q.; Xing, F.H.; Li, S.T.; Dai, Y.R. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing. Meteorol. Atmos. Phys. 2018, 131, 681–695. [Google Scholar] [CrossRef]
- Yan, X.; Liang, C.; Jiang, Y.Z.; Luo, N.N.; Zang, Z.; Li, Z.Q. A Deep Learning Approach to Improve the Retrieval of Temperature and Humidity Profiles from a Ground-Based Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8427–8437. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.C.; Lee, S.; Crawford, M.M. Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical data. Remote Sens. Environ. 2019, 231, 111204. [Google Scholar] [CrossRef]
- Xue, Y.; Forman, B.A. Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and the Advanced Microwave Scanning Radiometer. Remote Sens. Environ. 2015, 170, 153–165. [Google Scholar] [CrossRef]
- Bao, Y.S.; Cai, X.; Qian, C.; Min, J.Z.; Lu, Q.F. 0–10 KM Temperature and Humidity Profiles Retrieval from Ground-based Microwave Radiometer. J. Trop. Meteorol. 2018, 24, 243–252. [Google Scholar] [CrossRef]
- Zhang, T.H.; Bao, Y.S.; Qian, Y.Z.; Lin, L.B.; Liu, X.L.; Li, L.; Hou, Y.; Lei, H.Y.; Li, G.W.; Ma, J.; et al. Atmospheric temperature and humidity profile retrievals based on BP neural network and genetic algorithm. J. Trop. Meteorol. 2020, 36, 97–107. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Yan, H.L.; Wu, P.; Zhou, D. Linear correction method for improved atmospheric vertical profile retrieval based on ground-based microwave radiometer. Atmos. Res. 2020, 232, 104678. [Google Scholar] [CrossRef]
- Gregori, D.A.M.; Guadalupe, S.H.; Juan, L.G.R.; Alberto, C.; Lucas, A.A. Estimating the urban atmospheric boundary layer height from remote sensing applying machine learning techniques. Atmos. Res. 2021, 266, 105962. [Google Scholar] [CrossRef]
- Qian, Q.F.; Jia, X.J.; Lin, H.; Zhang, H.Z. Seasonal Forecast of Nonmonsoonal Winter Precipitation over the Eurasian Continent Using Machine-Learning Models. J. Clim. 2021, 34, 7113–7129. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.M.; Sun, F.B.; Wang, H.; Wu, L.F.; Zhang, X.Z.; Liu, W.B.; Che, H.Z. Correction of Overestmation in Observed Land Surface Temperatures Baesd on Machine Learning Models. J. Clim. 2022, 35, 5359–5377. [Google Scholar] [CrossRef]
- Chen, B.; Qin, H.L.; Chen, G.X.; Xue, H.J. Ocean Salinity as a Precursor of Summer Rainfall over the East Asian Monsoon Region. J. Clim. 2019, 32, 5659–5676. [Google Scholar] [CrossRef]
- Tornow, F.; Domenech, C.; Fischer, J. On the Use of Geophysical Parameters for the Top-of-Atmosphere Shortwave Clear-Sky Radiance-to-Flux Conversion in EarthCARE. J. Atmos. Ocean. Technol. 2019, 36, 717–732. [Google Scholar] [CrossRef]
- Jiang, M.J.; Chen, Z.H.; Yang, Y.S.; Ni, C.J.; Yang, Q. Establishment of aerosol optical depth dataset in the Sichuan Basin by the random forest approach. Atmos. Pollut. Res. 2022, 13, 101394. [Google Scholar] [CrossRef]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Hanover, MA, USA, 2009; Volume 2, pp. 1–127. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An Overview. Neural. Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.B.; Mao, J.T.; Chen, H.H.; Chan, P.W.; Wu, D.; Li, F.; Deng, T. A Study of a Retrieval Method for Temperature and Humidity Profiles from Microwave Radiometer Observations Based on Principal Component Analysis and Stepwise Regression. J. Atmos. Ocean. Technol. 2011, 28, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Z.; Zhang, Q. Evaluation of microwave radiometer inversion products. Meteorol. Sci. Technol. 2010, 38, 325–331. [Google Scholar]
- Li, J.Q.; Li, X.S.; Dong, W.X.; Lv, Q.Q. Applicability analysis of temperature and humidity data from RPG-HATPRO microwave Radiometer inversion. J. Meteorol. Environ. 2017, 33, 89–95. [Google Scholar]
- Tian, J.B.; Zhang, Y.X.; Yan, H.Q.; Tang, W.T.; Kang, X.Y. Study on Neural Network Algorithm for Atmospheric Profile Based on Microwave Radiometer in Plateau Region. Plateau. Mt. Meteorol. Res. 2021, 41, 125–134. [Google Scholar] [CrossRef]
- Wang, J.H.; Rossow, W.B. Determination of Cloud Vertical Structure from Upper-Air Observations. J. Appl. Meteorol. Climatol. 1995, 34, 2243–2258. [Google Scholar] [CrossRef]
- Poore, K.D.; Wang, J.H.; Rossow, W.B. Cloud Layer Thicknesses from a Combination of Surface and Upper-Air Observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Choe, Y.J.; Yom, J.H. Improving accuracy of land surface temperature prediction model based on deep-learning. Spat. Inf. Res. 2020, 28, 377–382. [Google Scholar] [CrossRef]
- Milad, A.; Adwan, I.; Majeed, S.A.; Yusoff, N.I.M.; Al-Ansari, N.; Yaseen, Z.M. Emerging Technologies of Deep Learning Models Development for Pavement Temperature Prediction. IEEE Access 2021, 9, 23840–23849. [Google Scholar] [CrossRef]
- Hou, P.; Guo, P.; Wu, P.; Wang, J.; Gangopadhyay, A.; Zhang, Z. A Deep Learning Model for Detecting Dust in Earth’s Atmosphere from Satellite Remote Sensing Data. In Proceedings of the IEEE International Conference on Smart Computing SMARTCOMP, Bologna, Italy, 14–17 September 2020; pp. 196–201. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, C.; Deng, L. Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting. Sci. Rep. 2018, 8, 14285–14297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ishwaran, H. Random Forests for Genomic Data Analysis. Genomics 2012, 99, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Nguyen, T.T.; Huang, J.Z.; Nguyen, T.T. An Efficient Random Forests Algorithm for High Dimensional Data Classification. Adv. Data Anal. Classif. 2018, 12, 953–972. [Google Scholar] [CrossRef]
- Jung, Y.S. Multiple Predicting K-fold Cross-Validation for Model Selection. J. Nonparametr. Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Jung, Y.S.; Hu, J.H. A K-fold Averaging Cross-Validation Procedure. J. Nonparametr. Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.T. Performance Evaluation of Classification Algorithms by K-fold and leave-one-out Cross Validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
Method | RMSE | CV-R2 | MAE | |
---|---|---|---|---|
DL | 2.32 | 0.98 | 1.73 | |
Temperature (°C) | GBM | 2.33 | 0.98 | 1.80 |
XGBoost | 2.49 | 0.98 | 1.81 | |
RF | 3.07 | 0.97 | 2.17 | |
DL | 17.96 | 0.53 | 14.04 | |
RH (%) | GBM | 14.96 | 0.67 | 11.09 |
XGBoost | 13.72 | 0.72 | 9.49 | |
RF | 13.70 | 0.72 | 9.92 |
Height | Method | RMSE | R2 | MAE |
---|---|---|---|---|
250–550 hPa | DL | 19.69 | 0.34 | 15.09 |
GBM | 20.09 | 0.34 | 15.91 | |
XGBoost | 20.71 | 0.29 | 16.20 | |
RF | 19.50 | 0.36 | 15.44 | |
700–750 hPa | DL | 24.79 | 0.27 | 20.65 |
GBM | 26.07 | 0.18 | 21.48 | |
XGBoost | 26.80 | 0.21 | 21.62 | |
RF | 26.22 | 0.18 | 21.48 | |
775–875 hPa | DL | 20.99 | 0.18 | 17.73 |
GBM | 16.27 | 0.44 | 12.50 | |
XGBoost | 14.97 | 0.53 | 11.38 | |
RF | 15.55 | 0.47 | 11.99 | |
900–1000 hPa | DL | 12.93 | 0.62 | 8.84 |
GBM | 11.67 | 0.59 | 9.00 | |
XGBoost | 12.19 | 0.56 | 9.43 | |
RF | 11.14 | 0.60 | 8.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Wu, H.; Gu, T.; Wang, Z.; Yue, H.; Wu, G.; Zhu, L.; Pu, D.; Tang, P.; Jiang, M. Machine Learning Model-Based Retrieval of Temperature and Relative Humidity Profiles Measured by Microwave Radiometer. Remote Sens. 2023, 15, 3838. https://doi.org/10.3390/rs15153838
Luo Y, Wu H, Gu T, Wang Z, Yue H, Wu G, Zhu L, Pu D, Tang P, Jiang M. Machine Learning Model-Based Retrieval of Temperature and Relative Humidity Profiles Measured by Microwave Radiometer. Remote Sensing. 2023; 15(15):3838. https://doi.org/10.3390/rs15153838
Chicago/Turabian StyleLuo, Yuyan, Hao Wu, Taofeng Gu, Zhenglin Wang, Haiyan Yue, Guangsheng Wu, Langfeng Zhu, Dongyang Pu, Pei Tang, and Mengjiao Jiang. 2023. "Machine Learning Model-Based Retrieval of Temperature and Relative Humidity Profiles Measured by Microwave Radiometer" Remote Sensing 15, no. 15: 3838. https://doi.org/10.3390/rs15153838
APA StyleLuo, Y., Wu, H., Gu, T., Wang, Z., Yue, H., Wu, G., Zhu, L., Pu, D., Tang, P., & Jiang, M. (2023). Machine Learning Model-Based Retrieval of Temperature and Relative Humidity Profiles Measured by Microwave Radiometer. Remote Sensing, 15(15), 3838. https://doi.org/10.3390/rs15153838