Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA
Abstract
:1. Introduction
2. Study Area
3. Data Collection
3.1. SAR Acquisitions
3.2. Underground Parameters
4. Methodology
4.1. Mapping Tunneling-Induced Ground Subsidence Using Sentinel-1 SAR Interferometry
4.1.1. Step I—Data Preparation
4.1.2. Step II—Preprocessing
4.1.3. Step III—Time-Series Analysis
4.1.4. Step IV—Vertical Deformation
4.2. ML-Based Parametric Analysis of Tunneling-Induced Ground Settlements
- (1)
- For each repetition in 1, …, :Randomly shuffle column to generate a corrupted version of the data.Compute the score of the decision tree model on computed corrupted data;
- (2)
- Compute the importance for feature defined as .
5. Results
5.1. Tunneling-Induced Uneven Ground Subsidence
5.2. Ground Subsidence before Tunneling
5.3. Parametric Analysis of Uneven Ground Settlement
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR Time Series: Experimental validation. IEEE Trans. Geosci. Remote Sens. 2007, 5, 1142–1153. [Google Scholar] [CrossRef]
- Wnuk, K.; Zhou, W.; Gutierrez, M. Mapping urban excavation induced deformation in 3D via multiplatform InSAR time-series. Remote Sens. 2021, 13, 4748. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Lee, G.J.; Choi, S.K.; Kwon, T.H.; Kim, Y.C.; Ryu, H.H.; Kim, S.; Bae, B.; Hyun, C. Monitoring of construction-induced urban ground deformations using Sentinel-1 PSInSAR: The case study of tunneling in Dangjin, Korea. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102721. [Google Scholar] [CrossRef]
- Talledo, D.A.; Miano, A.; Bonano, M.; Carlo, F.D.; Lanari, R.; Manunta, M.; Meda, A.; Mele, A.; Prota, A.; Saetta, A.; et al. Satellite radar interferometry: Potential and limitations for structural assessment and monitoring. Build. Eng. 2022, 46, 103756. [Google Scholar] [CrossRef]
- Macchiarulo, V.; Milillo, P.; DeJong, M.J.; Martí, J.G.; Sanchez, J.; Giardina, G. Integrated InSAR monitoring and structural assessment of tunneling-induced building deformations. Struct. Control Health Monit. 2021, 28, e2781. [Google Scholar] [CrossRef]
- Duysak, H.; Yigit, E. Investigation of the Performance of Different Wavelet-Based Fusions of SAR and Optical Images Using Sentinel-1 and Sentinel-2 Datasets. Int. J. Geotech. Eng. 2021, 7, 81–90. [Google Scholar] [CrossRef]
- Ahady, A.B.; Kaplan, G. Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. Int. J. Eng. Geol. 2021, 7, 24–31. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Núria, D.; Bruno, C. Persistent scatterer interferometry: A review. ISPRS J. Photog. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Wnuk, K.; Walton, G.; Zhou, W. Four-dimensional filtering of InSAR persistent scatterers elucidates subsidence induced by tunnel excavation in the Sri Lankan highlands. J. Appl. Remote Sens. 2019, 13, 034508. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- García, A.J.; Marchamalo, M.; Martínez, R.; González-Rodrigo, B.; Gonzálezc, C. Integrating geotechnical and SAR data for the monitoring of underground works in the Madrid urban area: Application of the Persistent Scatterer Interferometry technique. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 27–36. [Google Scholar] [CrossRef]
- Macchiarulo, V.; Giardina, G.; Milillo, P.; Martí, J.G.; Sanchez, J.; DeJong, M.J. Settlement-induced building damage assessment using MT-InSAR data for the Crossrail case study in London. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC), Cambridge, UK, 8–10 July 2019; pp. 721–727. [Google Scholar] [CrossRef] [Green Version]
- Milillo, P.; Giardina, G.; DeJong, M.J.; Perissin, D.; Milillo, G. Multi-temporal InSAR structural damage assessment: The London Crossrail case study. Remote Sens. 2018, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, M.; Armaş, I.; Dumitru, P.; Calin, A.; Badescu, O.; Necsoiu, M. Monitoring subway construction using Sentinel-1 data: A case study in Bucharest, Romania. Int. J. Remote Sens. 2020, 41, 2644–2663. [Google Scholar] [CrossRef]
- Reinders, K.J.; Hanssen, R.F.; Leijen, F.V.; Korff, M. Augmented satellite InSAR for assessing short-term and long-term surface deformation due to shield tunnelling. Tunn. Undergr. Space Technol. 2021, 101, 103745. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Time-series InSAR applications over urban areas in China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 92–100. [Google Scholar] [CrossRef]
- Cavur, M.; Moraga, J.; Duzgun, H.S.; Soydan, H.; Jin, G. Displacement analysis of geothermal field based on PSInSAR and SOM clustering algorithms: A case study of Brady Field, Nevada-USA. Remote Sens. 2021, 13, 349. [Google Scholar] [CrossRef]
- Wang, H.; Feng, G.; Xu, B.; Yu, Y.P.; Li, Z.; Du, Y.N.; Zhu, J.J. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with PSInSAR data: A case study in Guangzhou, China. Remote Sens. 2017, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Roccheggiani, M.; Piacentini, D.; Tirincanti, E.; Perissin, D.; Menichetti, M. Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR interferometry. Remote Sens. 2019, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Anantrasirichai, N.; Biggs, J.; Kelevitz, K.; Sadeghi, Z.; Wright, T.; Thompson, J.; Achim, A.M.; Bull, D. Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2940–2950. [Google Scholar] [CrossRef]
- Khan, R.; Li, H.; Afzal, Z.; Basir, M.; Arif, M.; Hassan, W. Monitoring subsidence in urban area by PSInSAR: A case study of Abbottabad City, Northern Pakistan. Remote Sens. 2021, 13, 1651. [Google Scholar] [CrossRef]
- Broere, W.; Festa, D. Correlation between the kinematics of a tunnel boring machine and the observed soil displacements. Tunn. Undergr. Space Technol. 2017, 70, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Sepehrmanesh, M.; Nasri, V.; Allahverdi, N. Impact of EPB Tunneling on Pile Foundations and Existing Tunnels. In Proceedings of the North American Tunneling: 2014 Proceedings, The Society for Mining, Metallurgy and Exploration, Los Angeles, CA, USA, 22–25 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yang, M.S.; Dong, J.; Liao, M.S. Investigating deformation along metro lines in coastal cities considering different structures with InSAR and SBM analyses. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103099. [Google Scholar] [CrossRef]
- O’Reilly, M.P.; New, B.M. Settlements above Tunnel in the UK-Their Magnitude and Prediction, Presented at Tunneling; Institution of Mining and Metallurgy: London, UK, 1982; pp. 173–181. [Google Scholar]
- Zhou, W.; Li, S.; Chen, G.; Ke, J. InSAR Application in Assessment of Oilfield Subsidence in North Slope of Alaska, Golden Rocks. In Proceedings of the 41st U.S. Rock Mechanics Symposium, Golden, CO, USA, 17–21 June 2006. [Google Scholar]
- Liu, L.; Zhou, W.; Gutierrez, M. Effectiveness of predicting tunneling-induced ground settlements using machine learning methods with small datasets. J. Rock Mech. Geotech. Eng. 2022, 14, 1028–1041. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Gutierrez, M. Physics-informed ensemble machine learning framework for better predicting tunneling-induced ground settlement. Transp. Geotech. 2023. Under review. [Google Scholar]
- Kai, L.; Xiangyu, L.; Zhihui, Z.; Lodewijk, B.; Hua, W. Factor-Bounded Nonnegative Matrix Factorization. ACM Trans. Knowl. Discov. Data 2021, 15, 111. [Google Scholar] [CrossRef]
- Xiangyu, L.; Hua, W. Adaptive Principal Component Analysis. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), Alexandria, VA, USA, 28–30 April 2022; pp. 486–494. [Google Scholar] [CrossRef]
- Chou, W.I.; Bobet, A. Predictions of ground deformations in shallow tunnels in clay. Tunn. Undergr. Space Technol. 2022, 17, 3–19. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through COSMO-SkyMed Persistent Scatterers. ISPRS J. Photog. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Choia, S.J.; Chaudhurib, D.; Hudsonb, M.B.; Hansmire, W.H. Geotechnical Investigation for Regional Connector Transit Corridor Project in Los Angeles, California. In Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, 15–18 November 2015; pp. 15–18. [Google Scholar] [CrossRef]
- Gibbard, P.; Kolfschoten, V.T. The Pleistocene and Holocene Epochs. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 441–452. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis (Remote Sensing and Digital Image Processing); Springer: Amsterdam, The Netherlands, 2022; ISBN 978-0-7923-6945-5. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; pp. 4362–4364. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Ebdon, D. Statistics in Geography; Blackwell: Oxford, UK, 1985; Volume 754. [Google Scholar]
- Wessel, P.; Smith, W.; Scharroo, R.; Luis, J.F.; Wobbe, F. The Generic Mapping Tools. Eos Trans. Am. Geophys. Union 2019, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Isya, N.H.; Niemeier, W.; Gerke, M. 3D estimation of slow ground motion using InSAR and the slope aspect assumption, a case study: The puncak pass landslide, Indonesia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Peck, R. Deep excavations and tunneling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico; 1969; pp. 225–290. [Google Scholar]
- Giardina, G.; Milillo, P.; DeJong, M.J.; Perissin, D.; Milillo, G. Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment. Struct. Control Health Monit. 2019, 26, e2285. [Google Scholar] [CrossRef] [Green Version]
- New, B.M.; Bowers, K.H. Ground movement model validation at the Heathrow express train tunnel. In Proceedings of the Tunnelling 94, IMM, London, UK; 1993; pp. 301–329. [Google Scholar]
- Suwansawa, S.; Einstein, H.H. Describing settlement troughs over twin tunnels using a superposition technique. J. Geotech. Geoenviron. 2007, 133, 445–468. [Google Scholar] [CrossRef]
- Holzer, T.L.; Johnson, A.I. Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 1985, 11, 245–255. [Google Scholar] [CrossRef]
- Khorrami, M.; Abrishami, S.; Maghsoudi, Y.; Alizadeh, B.; Perissin, D. Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Sci. Rep. 2020, 10, 11357. [Google Scholar] [CrossRef] [PubMed]
Path | Flight Direction | Heading | Incidence Angle | Time Span | Number of Acquisitions |
---|---|---|---|---|---|
71 | Descending | 9 January 2016–12 December 2016 | 27 | ||
64 | Ascending | 3 January 2017–21 February 2018 | 37 | ||
71 | Descending | 3 January 2017–27 February 2018 | 32 |
Variables | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
27.50 | 35.50 | 31.84 | 2.29 | |
24.00 | 112.00 | 58.85 | 24.78 | |
7.00 | 263.00 | 86.74 | 54.13 | |
0.00 | 40.00 | 25.97 | 13.24 | |
0.00 | 181.00 | 61.53 | 48.11 | |
22.00 | 50.00 | 31.41 | 8.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhou, W.; Gutierrez, M. Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA. Remote Sens. 2023, 15, 202. https://doi.org/10.3390/rs15010202
Liu L, Zhou W, Gutierrez M. Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA. Remote Sensing. 2023; 15(1):202. https://doi.org/10.3390/rs15010202
Chicago/Turabian StyleLiu, Linan, Wendy Zhou, and Marte Gutierrez. 2023. "Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA" Remote Sensing 15, no. 1: 202. https://doi.org/10.3390/rs15010202
APA StyleLiu, L., Zhou, W., & Gutierrez, M. (2023). Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA. Remote Sensing, 15(1), 202. https://doi.org/10.3390/rs15010202