Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data
Abstract
:1. Introduction
2. Data and Method
2.1. MERRA-2
2.2. SONET
2.3. PARASOL/GRASP
2.4. Method
3. Results
3.1. Validation of MEERA-2 AOD with SONET
3.2. Validation of MEERA-2 AE with SONET
3.3. Validation of MEERA-2 AAOD with SONET
3.4. Intercomparison of MERRA-2 and PARASOL Seasonal AOD
3.5. Intercomparison of MERRA-2 and PARASOL Seasonal AE
3.6. Intercomparison of MERRA-2 and PARASOL Seasonal AAOD
4. Discussion
4.1. Climatological Aerosol Optical Propertie
4.2. Climatological Aerosol Components
4.3. Evaluation of BC Mass Concentration with In situ Measurements
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 36, 335–358. [Google Scholar] [CrossRef]
- Reinman, S.L. Intergovernmental Panel on Climate Change (IPCC). Encycl. Energy Nat. Resour. Environ. Econ. 2013, 26, 48–56. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, P.; Breon, F.; Leroy, M.; Podaire, A.; Bricaud, A.; Buriez, J.; Seze, G. The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens. 1994, 32, 598–615. [Google Scholar] [CrossRef]
- Anderson, T.L.; Wu, Y.; Chu, D.A.; Schmid, B.; Redemann, J.; Dubovik, O. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 2005, 110, D18204. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; Mccarty, W.; Suárez, M.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. Climate Data Guide—Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.; Gao, C.; Yan, Y.; Bao, J.; Su, L.; Liu, M.; Peng, N.; Liu, M. A long-term analysis of atmospheric black carbon MERRA-2 concentration over China during 1980–2019. Atmos. Environ. 2021, 264, 118662. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Min, S.K. Long-term evaluation of atmospheric composition reanalyses from CAMS, TCR-2, and MERRA-2 over South Korea: Insights into applications, implications, and limitations—ScienceDirect. Atmos. Environ. 2020, 246, 118062. [Google Scholar] [CrossRef]
- Wei, J.C. Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective. In Proceedings of the Agu Fall Meeting, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Cheng, C.; Dubovik, O.; Schuster, G.L.; Fuertes, D.; Meijer, Y.; Landgraf, J.; Karol, Y.; Li, Z. Characterization of temporal and spatial variability of aerosols from ground-based climatology: Towards evaluation of satellite mission requirements. J. Quant. Spectrosc. Radiat. Transf. 2021, 268, 107627. [Google Scholar] [CrossRef]
- Sun, E.; Che, H.; Xu, X.; Wang, Z.; Lu, C.; Gui, K.; Zhao, H.; Zheng, Y.; Wang, Y.; Wang, H. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016. Theor. Appl. Climatol. 2019, 136, 363–375. [Google Scholar] [CrossRef]
- Sun, E.; Xu, X.; Che, H.; Tang, Z.; Gui, K.; An, L.; Lu, C.; Shi, G. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol. Terr. Phys. 2019, 186, 8–19. [Google Scholar] [CrossRef]
- Tuygun, G.T.; Gündodu, S.; Elbir, T. Estimation of ground-level particulate matter concentrations based on synergistic use of MODIS, MERRA-2 and AERONET AODs over a coastal site in the Eastern Mediterranean. Atmos. Environ. 2021, 261, 118562. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 7, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and seasonal variability of PM 2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ. 2018, 191, 70–78. [Google Scholar] [CrossRef]
- Randles, C.A.; Sliva, A.; Buchard, V.; Colarco, P.R.; Flynn, C.J. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D. The MERRA-2 Aerosol Reanalysis, 1980—Onward, Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Herman, M.; Federspiel, C. GRASP: A versatile algorithm for characterizing the atmosphere. Spienewsroom 2014, 25, 2–1201408. [Google Scholar] [CrossRef]
- Dubovik, O.; Fuertes, D.; Litvinov, P.; Lopatin, A.; Lapyonok, T.; Doubovik, I.; Xu, F.; Ducos, F.; Chen, C.; Torres, B. A Comprehensive Description of Multi-Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications. Front. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Chen, C.; Dubovik, O.; Fuertes, D.; Litvinov, P.; Federspiel, C. Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth Syst. Sci. Data 2020, 12, 3573–3620. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Zhang, Y.; Chen, C.; Dubovik, O.; Zhang, Y.; Xu, H.; Li, K.; Chen, J.; Wang, H.; et al. Validation of POLDER GRASP aerosol optical retrieval over China using SONET observations. J. Quant. Spectrosc. Radiat. Transf. 2020, 246, 106931. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J. Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-sky radiometer Observation NETwork (SONET) measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Li, Z.; Goloub, P.; Blarel, L.; Yang, B.; Li, K.; Podvin, T.; Li, D.; Xie, Y.; Chen, X.; Gu, X. Method to intercalibrate sunphotometer constants using an integrating sphere as a light source in the laboratory. Appl. Opt. 2013, 52, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, Z.; Li, D.; Li, W.; Blarel, L. Transfer method to calibrate the normalized radiance for a CE318 Sun/sky radiometer. Chin. Opt. Lett. 2015, 13, 041001. [Google Scholar]
- Ma, Y.; Li, Z.; Li, Z.; Xie, Y.; Fu, Q.; Li, D.; Zhang, Y.; Xu, H.; Li, K. Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET. Remote Sens. 2016, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Li, L.; Dubovik, O.; Derimian, Y.; Schuster, G.L.; Lapyonok, T.; Litvinov, P.; Ducos, F.; Fuertes, D.; Chen, C.; Li, Z.; et al. Retrieval of aerosol components directly from satellite and ground-based measurements. Atmos. Chem. Phys. 2019, 19, 13409–13443. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Wang, L.; Li, Z.; Jiang, D.; Sun, L.; Liu, D.; Liu, L.; Yao, R.; Zhou, Z.; Wei, J. VIIRS Environmental Data Record and Deep Blue aerosol products: Validation, comparison, and spatiotemporal variations from 2013 to 2018 in China. Atmos. Environ. 2021, 250, 118265. [Google Scholar] [CrossRef]
- Espinosa, W.R.; Remer, L.A.; Dubovik, O.; Ziemba, L.; Beyersdorf, A.; Orozco, D.; Schuster, G.; Lapyonok, T.; Fuertes, D.; Martins, J.V. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements. Atmos. Meas. Tech. 2017, 10, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Lopatin, A.; Dubovik, O.; Fuertes, D.; Stenchikov, G.; Parajuli, S. Synergy processing of diverse ground-based remote sensing and in situ data using GRASP algorithm: Applications to radiometer, lidar and radiosonde observations. Atmos. Meas. Tech. 2021, 14, 2575–2614. [Google Scholar] [CrossRef]
- Román, R.; Torres, B.; Fuertes, D.; Cachorro, V.E.; Dubovik, O.; Toledano, C.; Cazorla, A.; Barreto, A.; Bosch, J.L.; Lapyonok, T. Remote sensing of lunar aureole with a sky camera: Adding information in the nocturnal retrieval of aerosol properties with GRASP code. Remote Sens. Environ. 2017, 196, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Goloub, P.; Veselovskii, I.; Bravo-Aranda, J.A.; Cheng, C. Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France. Atmos. Chem. Phys. 2019, 19, 1173–1193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, L.; Chen, C.; Chen, X.; Dubovik, O.; Derimian, Y.; Gui, K.; Zheng, Y.; Zhao, H.; Zhang, L.; et al. Validation of the aerosol optical property products derived by the GRASP/Component approach from multi-angular polarimetric observations. Atmos. Res. 2021, 263, 105802. [Google Scholar] [CrossRef]
- Ge, B.; Mei, X.; Li, Z.; Hou, W.; Xie, Y.; Zhang, Y.; Xu, H.; Li, K.; Wei, Y. An improved algorithm for retrieving high resolution fine-mode aerosol based on polarized satellite data: Application and validation for POLDER-3. Remote Sens. Environ. 2020, 247, 111894. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Ren, Y.; Wang, J.; Wu, C.; Han, Y.; Zhang, L.; Cheng, C.; Meng, J. Identification of chemical compositions and sources of atmospheric aerosols in Xi’an, inland China during two types of haze events. Sci. Total Environ. 2016, 566–567, 230–237. [Google Scholar] [CrossRef]
- Cao, J.J.; Wu, F.; Chow, J.C.; Lee, S.C.; Li, Y.; Chen, S.W.; An, Z.S.; Fung, K.K.; Watson, J.G.; Zhu, C.S. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos. Chem. Phys. 2005, 5, 3127–3137. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Z.; Tao, M.; Wang, X.; Wang, Y. Comparison and evaluation of the MODIS Collection 6 aerosol data in China. J. Geophys. Res. Atmos. 2015, 120, 6992–7005. [Google Scholar]
- Leeuw, G.D.; Sogacheva, L.; Rodriguez, E.; Kourtidis, K.; Georgoulias, A.K.; Alexandri, G.; Amiridis, V.; Proestakis, E.; Marinou, E.; Xue, Y. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: Data set evaluation and large-scale patterns. Atmos. Chem. Phys. 2018, 18, 1573–1592. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive Road Dust PM2.5 Emissions and Their Potential Health Impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Che, H.; Derimian, Y.; Dubovik, O.; Zhang, X. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia. Remote Sens. Environ. 2020, 247, 111913. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Tian, Q.; Ma, Y.; Zhang, F.; Zhang, Y.; Li, D.; Li, K.; Li, L. Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers. J. Geophys. Res. Atmos. 2013, 118, 6534–6543. [Google Scholar] [CrossRef]
Sites. | Longitude/ Latitude | Altitude(m) | Time (Start Time) | Aerosol Characteristics |
---|---|---|---|---|
Beijing | 116.4 E, 40.0 N | 59 | 2010.03- | Urban |
Guangzhou | 113.4 E, 23.1 N | 28 | 2011.11- | Maritime and urban |
Zhangye | 100.4 E, 38.9 N | 1364 | 2012.07- | Dust |
Harbin | 126.6 E, 45.7 N | 223 | 2013.12- | Urban |
Hefei | 117.2 E, 31.9 N | 36 | 2013.01- | Urban |
Minqin | 103.1 E, 38.6 N | 1589 | 2012.02- | Dust |
Nanjing | 119.0 E, 32.1 N | 52 | 2013.01- | Urban |
Shanghai | 121.4 E, 31.3 N | 84 | 2013.03- | Maritime and urban |
Xi’an | 109.0 E, 34.2 N | 389 | 2012.05- | Urban |
Zhoushan | 122.2 E, 30.0 N | 29 | 2012.01- | Maritime |
Chengdu | 104.0 E, 30.6 N | 510 | 2013.05- | Urban |
Songshan | 113.1 E, 34.5 N | 475 | 2013.11- | Urban |
AOD | AE | AAOD | |||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE | Bias | R | RMSE | Bias | R | RMSE | Bias | |
Beijing | 0.735 | 0.312 | −0.157 | 0.506 | 0.308 | 0.030 | 0.546 | 0.034 | −0.018 |
Harbin | 0.844 | 0.292 | −0.248 | 0.377 | 0.180 | −0.139 | −0.453 | 0.028 | −0.018 |
Minqin | 0.652 | 0.216 | −0.070 | 0.733 | 0.217 | 0.005 | −0.139 | 0.032 | −0.015 |
Nanjing | 0.743 | 0.246 | −0.090 | 0.529 | 0.288 | 0.160 | 0.418 | 0.030 | −0.004 |
Shanghai | 0.768 | 0.178 | 0.008 | 0.575 | 0.265 | 0.076 | 0.605 | 0.022 | 0.008 |
Songshan | 0.803 | 0.118 | −0.051 | 0.522 | 0.313 | 0.195 | 0.284 | 0.019 | −0.010 |
Xi’an | 0.676 | 0.366 | −0.293 | 0.624 | 0.326 | 0.001 | 0.263 | 0.058 | −0.040 |
Zhoushan | 0.822 | 0.169 | −0.044 | 0.546 | 0.289 | 0.063 | 0.572 | 0.022 | 0.012 |
Zhangye | 0.634 | 0.152 | −0.046 | 0.665 | 0.271 | −0.166 | 0.498 | 0.014 | −0.005 |
Guangzhou | 0.710 | 0.285 | −0.110 | 0.464 | 0.284 | 0.227 | 0.595 | 0.031 | −0.021 |
Hefei | 0.771 | 0.240 | −0.119 | 0.358 | 0.411 | 0.218 | 0.256 | 0.032 | −0.005 |
Chengdu | 0.817 | 0.339 | −0.291 | 0.850 | 0.329 | 0.276 | 0.702 | 0.036 | −0.021 |
MERRA-2 | GRASP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AOD | AE | AAOD | BC(mg/m3) | DU(mg/m3) | AOD | AE | AAOD | BC(mg/m3) | DU(mg/m3) | |
2011_DJF | 0.109 | 0.860 | 0.004 | 0.388 | 23.228 | 0.239 | 0.882 | 0.038 | 1.115 | 93.975 |
2011_MAM | 0.130 | 0.790 | 0.006 | 0.433 | 46.267 | 0.264 | 0.809 | 0.038 | 0.459 | 166.719 |
2011_JJA | 0.131 | 0.848 | 0.006 | 0.498 | 43.907 | 0.284 | 0.868 | 0.038 | 0.699 | 162.528 |
2011_SON | 0.117 | 0.904 | 0.006 | 0.582 | 25.467 | 0.237 | 0.986 | 0.033 | 1.127 | 77.576 |
2011 | 0.122 | 0.851 | 0.006 | 0.475 | 34.717 | 0.256 | 0.886 | 0.037 | 0.850 | 125.200 |
2012_DJF | 0.112 | 0.828 | 0.005 | 0.460 | 26.850 | 0.264 | 0.871 | 0.039 | 1.197 | 105.171 |
2012_MAM | 0.137 | 0.748 | 0.007 | 0.465 | 52.986 | 0.320 | 0.787 | 0.040 | 0.624 | 197.509 |
2012_JJA | 0.131 | 0.843 | 0.007 | 0.529 | 40.686 | 0.300 | 0.867 | 0.040 | 0.819 | 181.122 |
2012_SON | 0.109 | 0.907 | 0.006 | 0.537 | 21.895 | 0.232 | 0.936 | 0.033 | 1.213 | 80.796 |
2012 | 0.122 | 0.832 | 0.006 | 0.498 | 35.604 | 0.279 | 0.865 | 0.038 | 0.963 | 141.149 |
2013_DJF | 0.107 | 0.802 | 0.005 | 0.416 | 23.691 | 0.245 | 0.850 | 0.038 | 1.254 | 95.657 |
2013_MAM | 0.124 | 0.743 | 0.006 | 0.430 | 44.754 | 0.277 | 0.809 | 0.037 | 0.863 | 156.082 |
2013_JJA | 0.123 | 0.833 | 0.006 | 0.496 | 39.006 | 0.310 | 0.867 | 0.042 | 0.863 | 156.082 |
2013_SON | 0.103 | 0.857 | 0.005 | 0.449 | 22.714 | 0.260 | 1.080 | 0.022 | 1.159 | 157.360 |
2013 | 0.114 | 0.809 | 0.005 | 0.448 | 32.541 | 0.273 | 0.901 | 0.035 | 1.086 | 91.028 |
2011–2013 | 0.119 | 0.830 | 0.006 | 0.474 | 34.288 | 0.269 | 0.884 | 0.037 | 0.966 | 119.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, Y.; Li, Z.; Chen, C.; Zhang, Y.; Li, K.; Shi, Z.; Dong, J.; Xu, H.; Peng, Z.; Xie, Y.; et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sens. 2022, 14, 821. https://doi.org/10.3390/rs14040821
Ou Y, Li Z, Chen C, Zhang Y, Li K, Shi Z, Dong J, Xu H, Peng Z, Xie Y, et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sensing. 2022; 14(4):821. https://doi.org/10.3390/rs14040821
Chicago/Turabian StyleOu, Yang, Zhengqiang Li, Cheng Chen, Ying Zhang, Kaitao Li, Zheng Shi, Jiantao Dong, Hua Xu, Zongren Peng, Yisong Xie, and et al. 2022. "Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data" Remote Sensing 14, no. 4: 821. https://doi.org/10.3390/rs14040821
APA StyleOu, Y., Li, Z., Chen, C., Zhang, Y., Li, K., Shi, Z., Dong, J., Xu, H., Peng, Z., Xie, Y., & Luo, J. (2022). Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sensing, 14(4), 821. https://doi.org/10.3390/rs14040821