Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Rationale of the Approach
2.3. Data Collection
2.3.1. Satellite Data
2.3.2. Reference Data
2.4. Data Processing
2.4.1. Sampling
- (i)
- A sample of the grassland or crop class is a MODIS pixel strictly included within a parcel block that contains only grassland or one crop type (i.e., it covers >80% of the pixel’s area), respectively [57];
- (ii)
- A sample of the woods or urban class is a MODIS pixel with >85% of its area covered by a density of “Tree Cover Density” or “Imperviousness” HRL >0.8, respectively. Indeed, since “Tree Cover Density” and “Imperviousness” HRL products are expressed in density values from 0 to 1, a threshold value (0.8) was set to discriminate between wooded (or urban) areas and non-wooded (or non-urban) areas;
- (iii)
- A sample of the water class is a MODIS pixel with >90% of its area covered by the (1) permanent water class of the “Water & Wetness” HRL. Temporary water (2), permanent wetness (3) and temporary wetness (4) classes were discarded because they can characterize either water areas or grasslands.
2.4.2. Random Forest Modeling
2.4.3. Grassland Dynamics Analysis
- (i)
- The components “231—Pastures”, “242—Complex cultivation patterns”, “321—Natural grasslands” and “411—Inland marshes” of the 2018 CORINE Land Cover layer;
- (ii)
- The “grassland” HRL of the 2015 Copernicus layers;
- (iii)
- The “18—Permanent grasslands” and “19—Temporary grasslands” components of the 2016 LPIS layer;
- (iv)
- The “211—Grasslands” component of the 2018 French national LULC layer (“OSO”) [23];
- (v)
- The grassland frequency maps, calculated for the period 2006–2017 for each of the six MODIS MCD12Q1 v6 products at 500 m spatial resolution (“IGBP”,”UDM”, “Annual LAI”, “Annual BGC”, “Annual PFT”, and “LCCS 3”) [40].
2.4.4. Sub-Pixel Analysis
3. Results
3.1. Identification of Grasslands
3.2. Characterization of Grassland Frequency
3.3. Land Cover Percentages in MODIS Pixels Classified as Grassland
4. Discussion
4.1. Can MODIS 250 m Time-Series Combined with the RF Classifier Discriminate Grasslands from Other LULC Types at the National Scale?
4.2. Can a Decadal MODIS 250 m Time-Series Identify Semi-Natural Grasslands Based on a Grassland Frequency Map?
4.3. Is the 250 m Spatial Resolution of MODIS Data Adequate for Identifying Grasslands in Fragmented Landscapes?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Plantureux, S.; Pottier, E.; Carrère, P. Permanent grassland: New challenges, new definitions? Fourrages 2012, 2012, 181–193. [Google Scholar]
- Huguenin-Elie, O.; Delaby, L.; Klumpp, K.; Lemauviel-Lavenant, S.; Ryschawy, J.; Sabatier, R. The role of grasslands in biogeochemical cycles and biodiversity conservation. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; p. 486. ISBN 978-1-78676-200-9. [Google Scholar]
- Maltby, E.; Barker, T. The Wetlands Handbook; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- García-Feced, C.; Weissteiner, C.J.; Baraldi, A.; Paracchini, M.L.; Maes, J.; Zulian, G.; Kempen, M.; Elbersen, B.; Pérez-Soba, M. Semi-natural vegetation in agricultural land: European map and links to ecosystem service supply. Agron. Sustain. Dev. 2015, 35, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Paracchini, M.L.; Petersen, J.-E.; Hoogeveen, Y.; Bamps, C.; Burfield, I.; van Swaay, C. High Nature Value Farmland in Europe—An Estimate of the Distribution Patterns on the Basis of Land Cover and Biodiversity Data; JRC Scientific &Technical Report; European Commission: Luxemburg, 2008; p. 87. [Google Scholar]
- Council Directive 92/43/EEC Conservation of natural habitats and of wild flora and fauna. Int. J. Eur. Communities 1992, 206, 7–50.
- Kallis, G.; Butler, D. The EU water framework directive: Measures and implications. Water Policy 2001, 3, 125–142. [Google Scholar] [CrossRef]
- European Parliament Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Off. J. Eur. Communities 2013, 347, 608–670.
- European Parliament Regulation (EU) 2018/841 of the European parliament and of the council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. Off. J. Eur. Union 2018, 156, 1–25.
- Levin, G. Applying parcel-specific land-use data for improved monitoring of semi-natural grassland in Denmark. Environ. Monit. Assess. 2013, 185, 2615–2625. [Google Scholar] [CrossRef]
- Lomba, A.; Guerra, C.; Alonso, J.; Honrado, J.P.; Jongman, R.; McCracken, D. Mapping and monitoring High Nature Value farmlands: Challenges in European landscapes. J. Environ. Manag. 2014, 143, 140–150. [Google Scholar] [CrossRef]
- EUROSTAT Land Use and Coverage Area Frame Survey (LUCAS). 2017. Available online: https://ec.europa.eu/eurostat/web/products-catalogues/-/KS-01-17-069 (accessed on 13 December 2019).
- Chytrý, M.; Hennekens, S.M.; Jiménez-Alfaro, B.; Knollová, I.; Dengler, J.; Jansen, F.; Landucci, F.; Schaminée, J.H.; Aćić, S.; Agrillo, E.; et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 2016, 19, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Metz, A.; Marconcini, M.; Keil, M. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 230–237. [Google Scholar] [CrossRef]
- Xiao, Y.; Mignolet, C.; Mari, J.-F.; Benoît, M. Characterizing historical (1992–2010) transitions between grassland and cropland in mainland France through mining land-cover survey data. J. Integr. Agric. 2015, 14, 1511–1523. [Google Scholar] [CrossRef]
- Zimmermann, J.; González, A.; Jones, M.B.; O’Brien, P.; Stout, J.C.; Green, S. Assessing land-use history for reporting on cropland dynamics—A comparison between the Land-Parcel Identification System and traditional inter-annual approaches. Land Use Policy 2016, 52, 30–40. [Google Scholar] [CrossRef]
- Schaminée, J.H.; Chytrý, M.; Hennekens, S.M.; Janssen, J.A.; Jiménez-Alfaro, B.; Knollová, I.; Marceno, C.; Mucina, L.; Rodwell, J.S.; Tichý, L. Review of Grassland Habitats and Development of Distribution Maps of Heathland, Scrub and Tundra Habitats of EUNIS habitats Classification. Alterra Institute. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwinwPez_7nmAhWYFMAKHSg3BQ8QFjABegQIAxAC&url=https%3A%2F%2Frp.liu233w.com%3A443%2Fhttps%2Fforum.eionet.europa.eu%2Fnrc-biodiversity%2Flibrary%2Feunis_classification%2Freports%2Freport-2016-eunis-grasslands-review-and-heathland-scrub-tundra-maps%2Fdownload%2Fen%2F2%2FReport%25202016%2520EUNIS%2520grasslands%2520review%2520and%2520heathland-scrub-tundra%2520maps.pdf&usg=AOvVaw3hyAEmebXU3IXHxj9Ylng5 (accessed on 13 December 2019).
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. European Landscape Dynamics: CORINE Land Cover Data; CRC Press: Boca Raton, FL, USA, 2016; ISBN 1-4822-4468-3. [Google Scholar]
- Violle, C.; Choler, P.; Borgy, B.; Garnier, E.; Amiaud, B.; Debarros, G.; Diquelou, S.; Gachet, S.; Jolivet, C.; Kattge, J.; et al. Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study. Sci. Total Environ. 2015, 534, 43–51. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar]
- Lopes, M.; Fauvel, M.; Girard, S.; Sheeren, D. Object-based classification of grasslands from high resolution satellite image time series using Gaussian mean map kernels. Remote Sens. 2017, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Büttner, G.; Maucha, G.; Kosztra, B. High-Resolution Layers. In European Landscape Dynamics: CORINE Land Cover Data; CRC Press: Boca Raton, FL, USA, 2016; pp. 61–70. [Google Scholar]
- Dusseux, P.; Vertès, F.; Corpetti, T.; Corgne, S.; Hubert-Moy, L. Agricultural practices in grasslands detected by spatial remote sensing. Environ. Monit Assess. 2014, 186, 8249–8265. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Förster, M. Grassland habitat mapping by intra-annual time series analysis – Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Xu, D.; Chen, B.; Shen, B.; Wang, X.; Yan, Y.; Xu, L.; Xin, X. The Classification of Grassland Types Based on Object-Based Image Analysis with Multisource Data. Rangel. Ecol. Manag. 2019, 72, 318–326. [Google Scholar] [CrossRef]
- Palchowdhuri, Y.; Valcarce-Diñeiro, R.; King, P.; Sanabria-Soto, M. Classification of multi-temporal spectral indices for crop type mapping: A case study in Coalville, UK. J. Agric. Sci. 2018, 156, 24–36. [Google Scholar] [CrossRef]
- Rapinel, S.; Fabre, E.; Dufour, S.; Arvor, D.; Mony, C.; Hubert-Moy, L. Mapping potential, existing and efficient wetlands using free remote sensing data. J. Environ. Manag. 2019, 247, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; P. D. Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; R. Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar]
- Rapinel, S.; Dusseux, P.; Bouzillé, J.-B.; Bonis, A.; Lalanne, A.; Hubert-Moy, L. Structural and functional mapping of geosigmeta in Atlantic coastal marshes (France) using a satellite time series. Plant. Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1101–1108. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Budzynska, M.; Gatkowska, M.; Kowalik, W.; Bartold, M.; Kiryla, M. Importance of grasslands monitoring applying optical and radar satellite data in perspective of changing climate. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5782–5785. [Google Scholar]
- Estel, S.; Mader, S.; Levers, C.; Verburg, P.H.; Baumann, M.; Kuemmerle, T. Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environ. Res. Lett. 2018, 13, 074020. [Google Scholar] [CrossRef]
- Halabuk, A.; Mojses, M.; Halabuk, M.; David, S. Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series. Remote Sens. 2015, 7, 6107–6132. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Schiller, C.; Qu, J.; Kattenborn, T.; Zhao, X. Modis-Based Grassland Trends Within and Around the Kekexili Core Protection Zone of the Sanjiangyuan Nature Reserve. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2880–2882. [Google Scholar]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Lasseur, R.; Vannier, C.; Lefebvre, J.; Longaretti, P.-Y.; Lavorel, S. Landscape-scale modeling of agricultural land use for the quantification of ecosystem services. J. Appl. Remote Sens. 2018, 12, 046024. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Vuolo, F.; Atzberger, C. Improving Land Cover Maps in Areas of Disagreement of Existing Products using NDVI Time Series of MODIS–Example for Europe. Photogramm. Fernerkund. Geoinf. 2014, 2014, 393–407. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens 2014, 8, 083648. [Google Scholar] [CrossRef]
- Dedieu, J.-P.; Carlson, B.Z.; Bigot, S.; Sirguey, P.; Vionnet, V.; Choler, P. On the Importance of High-Resolution Time Series of Optical Imagery for Quantifying the Effects of Snow Cover Duration on Alpine Plant Habitat. Remote Sens. 2016, 8, 481. [Google Scholar] [CrossRef] [Green Version]
- Féret, J.B.; Corbane, C.; Alleaume, S. Detecting the Phenology and Discriminating Mediterranean Natural Habitats With Multispectral Sensors—An Analysis Based on Multiseasonal Field Spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2294–2305. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Sánchez Meador, A.J. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- AGRESTE. Enquête Prairies-Résultats. 2017. Available online: http://agreste.agriculture.gouv.fr/conjoncture/grandes-cultures-et-fourrages/prairies/ (accessed on 13 December 2019).
- European Environment Agency. Biogeographical Regions. 2016. Available online: https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed on 13 December 2019).
- Wasson, J.G.; Chandesris, A.; Pella, H.; Blanc, L. Les hydro-écorégions: Une approche fonctionnelle de la typologie des rivières pour la Directive cadre européenne sur lèau. Ingénieries EAT 2004, 40, 3–10. [Google Scholar]
- Stenzel, S.; Feilhauer, H.; Mack, B.; Metz, A.; Schmidtlein, S. Remote sensing of scattered Natura 2000 habitats using a one-class classifier. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 211–217. [Google Scholar] [CrossRef]
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series). Vegetation Index and Phenology Lab. The University of Arizona. 2010, pp. 1–38. Available online: https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf (accessed on 13 December 2019).
- Neeley, S. Analyzing Earth Data with NASA’s AppEEARS Tool to Improve Research Efficiency. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Thibault, J.; Fabre, E.; Rozo, C.; Arvor, D.; Corpetti, T.; Rapinel, S. Time-series spectral dataset for croplands in France (2006–2017). Data Brief 2019, 27, 104810. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- Kuhn, M. Caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar]
- Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; R Package Version 3.0. 2019. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 13 December 2019).
- Hunziker, P. Velox: Fast Raster Manipulation and Extraction, R Package Version 0.2. 0. 2017. Available online: https://cran.r-project.org/web/packages/velox/velox.pdf (accessed on 13 December 2019).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the Geospatial Data Abstraction Library. 2015. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 13 December 2019).
- Davies, C.E.; Moss, D.; Hill, M.O. EUNIS Habitat Classification Revised 2004. European Environment Agency European Topic Centre on Nature Protection and Biodiversity. 2004. Available online: https://inpn.mnhn.fr/docs/ref_habitats/Davies_&_Moss_2004_EUNIS_habitat_classification.pdf (accessed on 13 December 2019).
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, D.; Latifovic, R.; Zabcic, N.; Guindon, L.; Olthof, I. Development and assessment of a 250 m spatial resolution MODIS annual land cover time series (2000–2011) for the forest region of Canada derived from change-based updating. Remote Sens. Environ. 2014, 140, 731–743. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Henebry, G.M. Characterizing Land Use/Land Cover Using Multi-Sensor Time Series from the Perspective of Land Surface Phenology. Remote Sens. 2019, 11, 1677. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Warrant, G.W.; Sullivan, C.; Anderson, N.; Whittaker, G.W. Detecting and correcting logically inconsistent crop rotations and other land-use sequences. Int. J. Remote Sens. 2016, 37, 29–59. [Google Scholar] [CrossRef]
MOD13Q1 MYD13Q1 | Land Parcel Identification System | Water & Wetness HRL | Tree Cover Density HRL | Imperviousness HRL |
---|---|---|---|---|
2005–2006 | 2006 | 2015 | 2012 | 2006 |
2006–2007 | 2007 | 2015 | 2012 | 2006 |
2007–2008 | 2008 | 2015 | 2012 | 2006 |
2008–2009 | 2009 | 2015 | 2012 | 2009 |
2009–2010 | 2010 | 2015 | 2012 | 2009 |
2010–2011 | 2011 | 2015 | 2012 | 2009 |
2011–2012 | 2012 | 2015 | 2012 | 2012 |
2012–2013 | 2013 | 2015 | 2012 | 2012 |
2013–2014 | 2014 | 2015 | 2012 | 2012 |
2014–2015 | 2015 | 2015 | 2015 | 2015 |
2015–2016 | 2016 | 2015 | 2015 | 2015 |
2016–2017 | 2017 | 2015 | 2015 | 2015 |
Years | Class | Year n+1 | ||||
---|---|---|---|---|---|---|
Urban | Water | Wood | Crop | Grassland | ||
n and n+2 | Urban | Yes | No | No | No | No |
Water | No | Yes | No | No | No | |
Woods | No | No | Yes | No | No | |
Crop | No | No | No | Yes | Yes | |
Grassland | No | No | No | Yes | Yes |
Year | Overall Accuracy | Kappa Index | F1-Score | |||
---|---|---|---|---|---|---|
Before Filtering | After Filtering | Before Filtering | After Filtering | Before Filtering | After Filtering | |
2006 | 0.96 | NA | 0.94 | NA | 0.94 | NA |
2007 | 0.95 | 0.96 | 0.94 | 0.94 | 0.93 | 0.93 |
2008 | 0.92 | 0.93 | 0.89 | 0.91 | 0.89 | 0.90 |
2009 | 0.93 | 0.95 | 0.91 | 0.92 | 0.90 | 0.91 |
2010 | 0.93 | 0.94 | 0.90 | 0.92 | 0.89 | 0.90 |
2011 | 0.93 | 0.94 | 0.91 | 0.92 | 0.90 | 0.91 |
2012 | 0.93 | 0.94 | 0.90 | 0.92 | 0.88 | 0.89 |
2013 | 0.93 | 0.95 | 0.91 | 0.92 | 0.90 | 0.91 |
2014 | 0.93 | 0.94 | 0.90 | 0.92 | 0.89 | 0.90 |
2015 | 0.94 | 0.94 | 0.92 | 0.92 | 0.90 | 0.90 |
2016 | 0.93 | 0.95 | 0.91 | 0.93 | 0.88 | 0.90 |
2017 | 0.94 | NA | 0.91 | NA | 0.89 | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert-Moy, L.; Thibault, J.; Fabre, E.; Rozo, C.; Arvor, D.; Corpetti, T.; Rapinel, S. Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands. Remote Sens. 2019, 11, 3041. https://doi.org/10.3390/rs11243041
Hubert-Moy L, Thibault J, Fabre E, Rozo C, Arvor D, Corpetti T, Rapinel S. Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands. Remote Sensing. 2019; 11(24):3041. https://doi.org/10.3390/rs11243041
Chicago/Turabian StyleHubert-Moy, Laurence, Jeanne Thibault, Elodie Fabre, Clémence Rozo, Damien Arvor, Thomas Corpetti, and Sébastien Rapinel. 2019. "Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands" Remote Sensing 11, no. 24: 3041. https://doi.org/10.3390/rs11243041
APA StyleHubert-Moy, L., Thibault, J., Fabre, E., Rozo, C., Arvor, D., Corpetti, T., & Rapinel, S. (2019). Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands. Remote Sensing, 11(24), 3041. https://doi.org/10.3390/rs11243041