Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data
Abstract
:1. Introduction
2. Related Literature
2.1. Urban Land-Cover Mapping Based on Optical Remote Sensing Data
2.2. Urban Environmental Impact Analysis
2.3. Stockholm Green Infrastructure Change Monitoring
3. Study Area and Data Description
3.1. Study Area
3.2. Data Description
4. Methodology
4.1. Image Pre-Processing
4.2. Segmentation and Classification of Satellite Data
4.3. Methods for Landscape Change Analysis
4.3.1. Landscape Metrics and Urban Ecosystem Service Bundles
- Area: Larger green/blue areas provide more ecosystem services;
- Connectivity: Connected green/blue areas within landscapes increase service provision through enhanced movement corridors and material flows;
- Core: Core patch areas with no edge influence are important for species through the provision of a more unaltered habitat;
- Diversity: Increasing diversity in a heretofore predominantly green/blue landscape (such as Stockholm County) decreases services through the shift towards larger or more numerous and therefore more influential urban patches;
- Edge: Edge contamination of natural blue and green spaces through built-up space affects service quality though pollution and decreased species movement;
- Proximity: Closeness to built-up areas increases service provision importance.
- CA: Class area measures landscape composition; specifically, how much of a landscape is comprised of a particular patch type;
- COHESION: The patch cohesion index measures the physical connectedness of the considered patch type. Patch cohesion increases as the patch type becomes more consolidated or aggregated in its distribution, and thus more physically connected;
- CWED: Contrast-weighted edge density is an index that takes into account both edge density and edge contrast. It standardizes edge to a per unit area basis that facilitates comparison among landscapes of various sizes. Edge contrast is defined on a scale from 0 to 1, where 0 indicates no edge contrast and 1 the highest edge contrast between two classes. In this study, low-contrast values were assigned in-between green/blue classes (for example, Golf courses-UGS 0.2) and in-between built-up classes (i.e., LDB-HDB 0.2). High-contrast values were assigned between green/blue areas and built-up classes to varying degrees, for example: wetlands, water and forest versus HDB: 0.9, forest and wetlands versus LDB: 0.7, agriculture versus LDB: 0.6, etc.;
- TCA: The core area represents the area in the patch greater than the specified depth-of-edge distance from the perimeter. The total core area (TCA) is an aggregation of core areas over all patches of the corresponding patch type. TCA was chosen to quantify service provision classes where a negative effect from adjacent dissimilar patch types is expected. A generic edge-depth distance of 30 m is used here since no particular ecological profile is evaluated and edge effects differ for organisms and ecological processes [8];
- SHDI: Shannon’s diversity index is a measure of diversity over the complete landscape. SHDI increases as the proportional distribution of area among patch types becomes more equitable;
- PROX: Green and blue areas in direct proximity to urban areas are considered more valuable for provision of ecosystem services to nearby inhabitants than more distant green/blue areas. The proximity metric (PROX) is calculated by identifying areal amounts of the different land-cover classes within a 200 m buffer zone around urban areas and taking the ratio of each class amount to the urban area amount in order to incorporate the influence of urban growth.
- Recreation/Place values and social cohesion;
- Aesthetic benefits/Cognitive development;
- Temperature regulation/Moderation of climate extremes;
- Pollination, pest regulation and seed dispersal/Habitat for biodiversity.
4.3.2. Land-Cover Change and Environmental Impact Analysis
5. Results
5.1. Classification of Satellite Data
5.2. Landscape Change Analysis
5.2.1. Landscape Metrics and Ecosystem Service Bundle Changes
5.2.2. Land-Cover Change and Impact Analysis
Land-Cover Change according to Administrative Boundaries
Urban Change in and around Protected and Ecologically Significant Areas
6. Discussion
Limitations and Transferability of the Applied Methodology
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2018 Revision, Key Facts. Department of Economic and Social Affairs, Population Division, 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 21 April 2019).
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M.; Grimm, N. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems (No. 574.5268 A4); Springer: New York, NY, USA, 2008; p. 366. [Google Scholar] [CrossRef]
- Heilman, G.E.; Strittholt, J.R.; Slosser, N.C.; Dellasala, D.A. Forest Fragmentation of the Conterminous United States: Assessing Forest Intactness through Road Density and Spatial Characteristics: Forest fragmentation can be measured and monitored in a powerful new way by combining remote sensing, geographic information systems, and analytical software. BioScience 2002, 52, 411–422. [Google Scholar]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.S.; Schwartz, M.W.; Vesk, P.A.; McCarthy, M.A.; Hahs, A.K.; Clemants, S.E.; Corlett, R.T.; Duncan, R.P.; Norton, B.A.; Thompson, K.; et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 2009, 97, 4–9. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Fischer, J. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis; Island Press: Washington, DC, USA, 2006; ISBN 1-59726-021-5. [Google Scholar]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Hasse, J.E.; Lathrop, R.G. Land resource impact indicators of urban sprawl. Appl. Geogr. 2003, 23, 159–175. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L. Altered resources, disturbance, and heterogeneity: A framework for comparing urban and non-urban soils. Urban Ecosyst. 2009, 12, 23–44. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Stutzer, D.; Lawrence, W.; Tucker, C.; Imhoff, M. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2549–2556. [Google Scholar] [CrossRef] [Green Version]
- Hilty, J.A.; Lidicker, W.Z., Jr.; Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation; Island Press: Washington, DC, USA, 2012; ISBN 1-55963-096-5. [Google Scholar]
- Sustainable Development Goal 15. Available online: https://sustainabledevelopment.un.org/sdg15 (accessed on 6 August 2019).
- UN-DESA Division for Sustainable Development Goals. Sustainable Development Goal 15: Progress and Prospects, Outcome: Key Messages. In Proceedings of the An Expert Group Meeting in Preparation for HLPF 2018: Transformation Towards Sustianable and Resilient Societies, New York, NY, USA, 14–15 May 2018; Available online: https://sustainabledevelopment.un.org/content/documents/19647Key_messages_SDG_15_EGM_Final.pdf (accessed on 21 April 2019).
- Weng, Q.; Quattrochi, D.; Gamba, P.E. Urban Remote Sensing, 2nd ed.; CRC press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Ban, Y.; Gong, P.; Giri, C. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS J. Photogramm. Remote Sens. 2015, 103, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef]
- Deng, J.; Huang, Y.; Chen, B.; Tong, C.; Liu, P.; Wang, H.; Hong, Y. A Methodology to Monitor Urban Expansion and Green Space Change Using a Time Series ofMulti-Sensor SPOT and Sentinel-2A Images. Remote Sens. 2019, 11, 1230. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban Land Cover and Ecosystem Service Changes based on Sentinel-2A MSI and Landsat TM Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 485–497. [Google Scholar] [CrossRef]
- Colding, J. Local Assessment of Stockholm: Revisiting the Stockholm Urban Assessment. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, Germany, 2013; pp. 313–335. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [Google Scholar] [CrossRef]
- Wentz, E.A.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.W.; Quattrochi, D.; Rahman, A.; Seto, K.C. Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sens. 2014, 6, 3879–3905. [Google Scholar] [CrossRef] [Green Version]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Jacquin, A.; Misakova, L.; Gay, M. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landsc. Urban Plan. 2008, 84, 152–165. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogramm. Eng. Remote Sens. 2005, 71, 1275–1284. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Powers, R.P.; Hay, G.J.; Chen, G. How wetland type and area differ through scale: A GEOBIA case study in Alberta’s Boreal Plains. Remote Sens. Environ. 2012, 117, 135–145. [Google Scholar] [CrossRef]
- Jebur, M.N.; Mohd Shafri, H.Z.; Pradhan, B.; Tehrany, M.S. Per-pixel and object-oriented classification methods for mapping urban land cover extraction using SPOT 5 imagery. Geocarto Int. 2014, 29, 792–806. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebuv, M.N. A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto Int. 2014, 29, 351–369. [Google Scholar] [CrossRef]
- Chen, M.; Su, W.; Li, L.; Zhang, C.; Yue, A.; Li, H. Comparison of pixel-based and object-oriented knowledge-based classification methods using SPOT5 imagery. WSEAS Trans. Inf. Sci. Appl. 2009, 3, 477–489. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z.; Yang, X. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int. J. Remote Sens. 2013, 34, 5166–5186. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34, 1–26. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Tzotsos, A.; Argialas, D. Support Vector Machine Classification for Object-Based Image Analysis. In Lecture Notes in Geoinformation and Cartography; Springer Science and Business Media LLC: Berlin, Germany, 2008; pp. 663–677. [Google Scholar]
- Momeni, R.; Aplin, P.; Boyd, D.S. Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M. The Effects of Urban Patterns on Ecosystem Function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Andrew, M.E.; Wulder, M.A.; Nelson, T.A.; Coops, N.C. Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: A review. GIScience Remote Sens. 2015, 52, 344–373. [Google Scholar] [CrossRef]
- Barbosa, C.C.D.A.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Ayanu, Y.Z.; Conrad, C.; Nauss, T.; Wegmann, M.; Koellner, T. Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications. Environ. Sci. Technol. 2012, 46, 8529–8541. [Google Scholar] [CrossRef] [PubMed]
- De La Barrera, F.; Rubio, P.; Banzhaf, E. The value of vegetation cover for ecosystem services in the suburban context. Urban For. Urban Green. 2016, 16, 110–122. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.N.; Langemeyer, J.; McPhearson, T.; O’Farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, Germany, 2013; pp. 175–251. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Makeschin, F. A contribution towards a transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecol. Indic. 2012, 21, 30–38. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, U. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, U.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Leitão, A.B.; Ahern, J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc. Urban Plan. 2002, 59, 65–93. [Google Scholar] [CrossRef]
- Turner, M.G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 1990, 4, 21–30. [Google Scholar] [CrossRef]
- Gbanie, S.P.; Griffin, A.L.; Thornton, A. Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone. Remote Sens. 2018, 10, 129. [Google Scholar] [CrossRef]
- Haas, J.; Furberg, D.; Ban, Y. Satellite monitoring of urbanization and environmental impacts—A comparison of Stockholm and Shanghai. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 138–149. [Google Scholar] [CrossRef]
- Furberg, D.; Ban, Y. Satellite Monitoring of Urban Sprawl and Assessment of its Potential Environmental Impact in the Greater Toronto Area Between 1985 and 2005. Environ. Manag. 2012, 50, 1068–1088. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Lausch, A.; Blaschke, T.; Haase, D.; Herzog, F.; Syrbe, R.-U.; Tischendorf, L.; Walz, U. Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- Turner, M.G.; Donato, D.C.; Romme, W.H. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research. Landsc. Ecol. 2013, 28, 1081–1097. [Google Scholar] [CrossRef]
- Burkhard, B.; Petrosillo, I.; Costanza, R. Ecosystem services—Bridging ecology, economy and social sciences. Ecol. Complex. 2010, 7, 257–259. [Google Scholar] [CrossRef]
- Maltby, E.; Acreman, M.C. Ecosystem services of wetlands: Pathfinder for a new paradigm. Hydrol. Sci. J. 2011, 56, 1341–1359. [Google Scholar] [CrossRef]
- Colding, J.; Elmqvist, T.; Lundberg, J.; Ahrné, K.; Andersson, E.; Barthel, S.; Borgström, S.; Duit, A.; Ernstsson, H.; Tengö, M. The Stockholm Urban Assessment (SUA-Sweden). In Millennium Ecosystem Assessment Sub-Global Summary Report; Beijer Discussion Paper Series No. 182; The Beijer Institute of Ecological Economics, Royal Academy of Sciences: Stockholm, Sweden, 2003; p. 28. [Google Scholar]
- Borgström, S. Management of Urban Green Areas in the Stockholm County. Master’s Thesis, Department of Systems Ecology, Stockholm University, Stockholm, Sweden, 2003. [Google Scholar]
- Länsstyrelsen Stockholm [Stockholm County Administrative Board]. Förslag Till Grön Infrastruktur Regional Handlingsplan för Stockholms Län [Draft—Green Infrastructure: Regional Action Plan for Stockholm County]. Report 2018:1. Version 2018-02-15; ISBN 978-91-7281-788-3. Available online: https://www.lansstyrelsen.se/download/18.276e13411636c95dd933a55/1526903019168/Rapport%202018-1%20F%C3%B6rslag%20till%20gr%C3%B6n%20infrastruktur%20regional%20handlingsplan%20f%C3%B6r%20Stockholms%20l%C3%A4n.pdf (accessed on 21 April 2019). (In Swedish)
- Ekologigruppen AB. Regional Grön Infrastruktur i Stockholms Län: Bakgrund för Analyser av Värdekärnor och Spridningszoner [Regional Green Infrastructure in Stockholm County: Background for the Analysis of Core Areas and Ecological Zones]. Information about the Project. Copies of the Report Can Be Obtained from the Stockholm County Administrative Board. 2017. Available online: https://www.ekologigruppen.se/projekt/gron-infrastruktur-stockholms-lan/ (accessed on 21 April 2019). (In Swedish).
- Tillväxt- och Regionplaneförvaltningen (TRF). Regional Utvecklingsplan för Stockholmsregionen: RUFS 2050 [Regional Development Plan for the Stockholm Region 2050]. Report 2018:10. TRN 2015-0015. Available online: http://rufs.se/globalassets/e.-rufs-2050/rufs_regional_utvecklingsplan_for_stockholmsregionen_2050_tillganglig.pdf (accessed on 21 April 2019). (In Swedish).
- Stockholmsstad. Statististical Year-Book of Stockholm 2018; Stockholm City: Stockholm, Sweden, 2018; ISBN 91-89311-01-9. Available online: http://statistik.stockholm.se/attachments/article/38/Statistisk%20%C3%83%C2%A5rsbok%20f%C3%83%C2%B6r%20Stockholm%202018.pdf (accessed on 21 April 2019).
- Metzger, J.; Olsson, A.R. Sustainable Stockholm: Exploring Urban Sustainability in Europe’s Greenest City; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Nelson, A. Stockholm Case Study: City of Water. In Open Space Systems Report; University of Washington: Washington, DC, USA, 2006; Available online: https://depts.washington.edu/open2100/Resources/1_OpenSpaceSystems/Open_Space_Systems/Stockholm_Case_Study.pdf (accessed on 21 April 2019).
- Zhang, Y. Problems in the fusion of commercial high-resolution satellite as well as Landsat 7 images and initial solutions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 587–592. [Google Scholar]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency. Sentinel-2 User Handbook. ESA Standard Document, 24/07/2015 Issue 1 Rev 2. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 21 April 2019).
- Lantmäteriet [Swedish National Land Survey]. Product Description: GSD-Elevation Data, Grid 50+ nh. Document Version 1.2, 25/02/2019. Available online: https://www.lantmateriet.se/globalassets/kartor-och-geografisk-information/hojddata/e_grid50_plus_nh.pdf (accessed on 21 April 2019).
- Trimble Germany GmbH. eCognition Developer 9.2 Reference Book; Document Version 9.2.1; Trimble Germany GmbH: Munich, Germany, 2016. [Google Scholar]
- Shaban, M.A.; Dikshit, O. Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- De Martinao, M.; Causa, F.; Serpico, S.B. Classification of optical high resolution images in urban environment using spectral and textural information. In IGARSS 2003, Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 467–469. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Statistics Sweden. Tätorter Referensår 2010 [Population Centers Reference Year 2010]; Avdelningen för Regioner Och Miljö, SCB: Stockholm, Sweden, 2017. Available online: http://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/tatorter/ (accessed on 22 April 2019).
- Hsu, F.-C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amerst, MA, USA. 2012. Available online: https://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 22 April 2019).
- Liu, S.; Costanza, R.; Troy, A.; D’Aagostino, J.; Mates, W. Valuing New Jersey’s Ecosystem Services and Natural Capital: A Spatially Explicit Benefit Transfer Approach. Environ. Manag. 2010, 45, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Naturvårdsverket [Swedish Environmental Protection Agency]. Riktlinjer för Regionala Handlingsplaner för Grön Infrastruktur [Guidelines for Regional Action Plans for Green Infrastructure]; Naturvårdsverket: Stockholm, Sweden, 2015; ISBN 978-91-620-0000-0. Available online: http://www.naturvardsverket.se/upload/miljoarbete-i-samhallet/miljoarbete-i-sverige/regeringsuppdrag/2015/ru-gron-infrastruktur-delredovisning/ru-gron-infrastruktur-riktlinjer-20150924.pdf (accessed on 22 April 2019). (In Swedish)
- Att Bilda Naturreservat [To Establish a Nature Reserve]. Available online: https://www.naturvardsverket.se/Miljoarbete-i-samhallet/Miljoarbete-i-Sverige/Uppdelat-efter-omrade/Naturvard/Skydd-av-natur/Naturreservat/ (accessed on 6 August 2019). (In Swedish).
- Gascon, C. ECOLOGY: Receding Forest Edges and Vanishing Reserves. Science 2000, 288, 1356–1358. [Google Scholar] [CrossRef]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Olsén, S.R. Arealkrav og Behov for Buffersoner ved Vern av Urørt Barskog. [Area Requirements and Need for Buffer Zones in Protection of Coniferous Forest]. Ph.D. Thesis, Norwegian Forest Research Institute, Ås, Norway, 1988. (In Norwegian, with English summary). [Google Scholar]
- Thorell, M.; Götmark, F. Reinforcement capacity of potential buffer zones: Forest structure and conservation values around forest reserves in southern Sweden. For. Ecol. Manag. 2005, 212, 333–345. [Google Scholar] [CrossRef]
- Götmark, F.; Söderlundh, H.; Thorell, M. Buffer zones for forest reserves: Opinions of land owners and conservation value of their forest around nature reserves in southern Sweden. Biodivers. Conserv. 2000, 9, 1377–1390. [Google Scholar] [CrossRef]
- Hjorth, G.; (Environmental Management, Environmental Analysis Department, Stockholm City, Sweden). Personal Communication, 7 November 2018.
- Hernández-Moreno, Á.; Reyes-Paecke, S. The effects of urban expansion on green infrastructure along an extended latitudinal gradient (23°S–45°S) in Chile over the last thirty years. Land Use Policy 2018, 79, 725–733. [Google Scholar] [CrossRef]
- Thompson, P.L.; Rayfield, B.; Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 2017, 40, 98–108. [Google Scholar] [CrossRef]
- Regionplanekontoret. Regional Utvecklingsplan för Stockholmsregionen: RUFS 2010 [Regional Development Plan for the Stockholm Region 2010]. RTN 2008-0372, Rapport nr: 2010:5. Available online: http://www.rufs.se/globalassets/d.-rufs-2010/rufs-2010-planen/rufs10_hela.pdf (accessed on 18 April 2019). (In Swedish).
- Tillväxt, Miljö Och Regionplanering (TMR), Stockholms Läns Landsting. När, Vad Och Hur? Gröna Svaga Samband i Stockholmregionens Gröna Kilar [When, What and How? Green Weak Links in the Stockholm Region’s Green Wedges]. Rapport 5:2012; ISSN 978-91-85795-53-6. Available online: http://www.rufs.se/globalassets/h.-publikationer/2012_5_r_svaga_samband.pdf (accessed on 18 April 2019). (In Swedish)
- Borgström, S.; Cousins, S.; Lindborg, R. Outside the boundary—Land use changes in the surroundings of urban nature reserves. Appl. Geogr. 2012, 32, 350–359. [Google Scholar] [CrossRef]
- Ihse, M. Swedish agricultural landscapes—Patterns and changes during the last 50 years, studied by aerial photos. Landsc. Urban Plan. 1995, 31, 21–37. [Google Scholar] [CrossRef]
Sentinel-2 bands | Central wavelength (µm) | Resolution (m) |
Band 2 | 0.490 (Blue) | 10 |
Band 3 | 0.560 (Green) | 10 |
Band 4 | 0.665 (Red) | 10 |
Band 5 | 0.705 (Red edge) | 20 |
Band 6 | 0.740 (Red edge) | 20 |
Band 7 | 0.783 (Red edge) | 20 |
Band 8 | 0.842 (NIR) | 10 |
Band 8A | 0.865 (Red edge) | 20 |
Band 11 | 1.610 (SWIR) | 20 |
Band 12 | 2.190 (SWIR) | 20 |
SPOT-5 bands | Central wavelength (µm) | Resolution (m) |
Band 1 | 0.55 (Green) | 10 |
Band 2 | 0.65 (Red) | 10 |
Band 3 | 0.84 (NIR) | 10 |
Band 4 | 1.67 (SWIR) | 20 |
Ecosystem Service | Type of Service | Provided by Land Cover | Service Dependent on | Metrics |
---|---|---|---|---|
Food supply | Provisional | Agriculture, Forest, Water bodies | Area | CA |
Water supply | Provisional | Forest, Urban green spaces, Wetlands, Water bodies | Area, Edge | CA, CWED |
Urban Temperature regulation | Regulating | Forest, Golf courses, Urban green spaces, Wetlands, Water bodies | Area, Proximity | CA, PROX |
Noise reduction | Regulating | Agriculture, Forest, Golf courses, Urban green spaces | Area, Proximity | CA, PROX |
Air purification | Regulating | Forest, Golf courses Urban green spaces, Wetlands | Area, Proximity | CA, PROX |
Moderation of climate extremes | Regulating | Forest, Golf courses, Urban green spaces, Wetlands Water bodies | Area, Proximity | CA, PROX |
Runoff mitigation | Regulating | Agriculture, Forest, Golf courses, Urban green spaces, Wetlands, Water bodies | Area | CA |
Waste treatment | Regulating | Agriculture, Wetlands, Water bodies | Area | CA |
Global climate regulation | Regulating | Agriculture, Forest, Wetlands | Area | CA |
Pollination, pest regulation and seed dispersal | Regulating/ Supporting | Agriculture, Forests, Urban green spaces, Wetlands | Area, Connectivity, Core, Diversity, Edge | CA, COHESION CWED, SHDI, TCA |
Habitat for biodiversity | Supporting | Agriculture, Forest Urban green spaces, Wetlands | Area, Connectivity, Core, Diversity, Edge | CA, COHESION, CWED, SHDI, TCA |
Recreation | Cultural | Forest, Golf courses, Urban green spaces, Water bodies | Area, Diversity, Proximity | CA, SHDI, PROX |
Aesthetic benefits | Cultural | Forest, Urban green spaces, Wetlands, Water bodies | Area, Diversity, Proximity | CA, SHDI, PROX |
Cognitive development | Cultural | Forest, Urban green spaces, Wetlands, Water bodies | Area, Diversity, Proximity | CA, SHDI, PROX |
Place values and social cohesion | Cultural | Forests, Golf courses, Urban green spaces, Water bodies | Area, Diversity, Proximity | CA, SHDI, PROX |
Land Cover Class | Corresponding Land Cover (Liu et al [91]) | Total Value (2004$/acre/yr) |
---|---|---|
Water (freshwater) | Open Fresh Water | 765 |
Forest | Forest | 1283 |
Wetlands | Freshwater Wetlands | 8695 |
Agriculture | Cropland | 23 |
UGS | Urban Greenspace | 2473 |
Golf courses | Urban Greenspace | 2473 |
LDB | Urban or Barren | - |
HDB/roads | Urban or Barren | - |
Bare rock/clear cuts | Urban or Barren | - |
Proximate green/blue structure | (freshwater + forest + wetlands + cropland + UGS)/5 | 2648 |
2005 SPOT | 2015 Sentinel-2 | 2005 SPOT (combined HDB/roads) | 2015 Sentinel-2 (combined HDB/roads) | |||||
---|---|---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | UA | PA | |
High Density Built-up | 83.9 | 96.1 | 84.3 | 75.7 | 95.8 | 95.1 | 95.0 | 98.3 |
Roads/railways | 96.9 | 81.5 | 76.6 | 89.9 | ||||
Low Density Built-up | 90.4 | 85.6 | 91.5 | 87.0 | 90.4 | 85.7 | 91.5 | 87.0 |
Green urban areas | 81.7 | 86.1 | 79.0 | 81.1 | 81.7 | 86.1 | 79.0 | 81.1 |
Golf Courses | 97.5 | 95.4 | 95.0 | 90.4 | 97.5 | 95.4 | 95.0 | 90.4 |
Agriculture | 80.8 | 93.5 | 92.4 | 92.8 | 80.8 | 93.5 | 92.4 | 92.8 |
Forest | 83.0 | 99.8 | 86.2 | 99.7 | 83.0 | 99.8 | 86.2 | 99.7 |
Water | 98.0 | 99.9 | 97.0 | 99.8 | 98.0 | 99.9 | 97.1 | 99.8 |
Bare Rock/Clear Cuts | 91.1 | 74.9 | 96.6 | 90.7 | 91.1 | 74.9 | 96.6 | 90.7 |
Wetlands | 96.1 | 78.8 | 99.5 | 86.5 | 96.1 | 78.8 | 99.5 | 86.5 |
Overall Accuracy: | 89.2% | 89.3% | 90.5% | 92.4% | ||||
Overall Kappa Statistic: | 0.88 | 0.88 | 0.89 | 0.91 |
Ecosystem Service Bundles | % Change |
---|---|
Food supply | −2.52 |
Water supply | 2.12 |
Temperature regulation/Moderation of climate extremes | −7.97 |
Noise reduction | −8.85 |
Air purification | −8.32 |
Runoff mitigation | −1.08 |
Waste treatment | −3.43 |
Pollination, pest regulation and seed dispersal/Habitat | 1.22 |
Global climate regulation | −2.71 |
Recreation/Place values and social cohesion | −5.63 |
Aesthetic benefits/Cognitive development | −5.68 |
Land Cover | 2005 | 2015 | Gain/Loss |
---|---|---|---|
Open Fresh Water | 104.1 | 103.3 | −0.7 |
Forest | 1 063.4 | 1 052.9 | −10.5 |
Freshwater Wetlands | 76.3 | 76.5 | 0.2 |
Cropland | 5.4 | 5.2 | −0.2 |
Urban Greenspace | 187.5 | 226.7 | 39.2 |
Proximate green/blue structure | 535.4 | 503.6 | −31.7 |
Total | 1 972.0 | 1 968.3 | −3.7 |
Municipality | Urban Growth | Loss of Green Structure | Municipality | Urban Growth | Loss of Green Structure |
---|---|---|---|---|---|
Botkyrka | 1.0 | −1.7 | Sollentuna | 5.7 | −5.8 |
Danderyd | 3.6 | −3.6 | Solna | 3.8 | −3.8 |
Ekerö | 0.3 | −1.5 | Stockholm | 3.5 | −3.5 |
Hanninge | 1.1 | −0.8 | Sundbyberg | 9.7 | −9.7 |
Huddinge | 3.0 | −2.7 | Södertälje | 0.4 | −0.6 |
Järfälla | 5.9 | −5.0 | Tyresö | 1.2 | −1.0 |
Lidingö | 2.0 | −1.9 | Täby | 3.7 | −4.1 |
Nacka | 4.1 | −4.1 | Upplands-Bro | 4.7 | −2.1 |
Norrtälje | 0.7 | −1.4 | Upplands-Väsby | 6.1 | −6.3 |
Nykvarn | 1.3 | −0.3 | Vallentuna | 2.2 | −0.7 |
Nynäshamn | 1.2 | −0.9 | Vaxholm | -0.2 | 0.3 |
Salem | 0.3 | −0.8 | Värmdö | -0.3 | 0.2 |
Sigtuna | 4.7 | −1.3 | Österåker | 3.1 | −2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furberg, D.; Ban, Y.; Nascetti, A. Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data. Remote Sens. 2019, 11, 2408. https://doi.org/10.3390/rs11202408
Furberg D, Ban Y, Nascetti A. Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data. Remote Sensing. 2019; 11(20):2408. https://doi.org/10.3390/rs11202408
Chicago/Turabian StyleFurberg, Dorothy, Yifang Ban, and Andrea Nascetti. 2019. "Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data" Remote Sensing 11, no. 20: 2408. https://doi.org/10.3390/rs11202408
APA StyleFurberg, D., Ban, Y., & Nascetti, A. (2019). Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data. Remote Sensing, 11(20), 2408. https://doi.org/10.3390/rs11202408