Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT
Abstract
:1. Introduction
2. The 6S Atmospheric Code
3. REEFLECT: Principles and Main Developments
3.1. Atmospheric Properties
3.1.1. Gaseous Absorption
3.1.2. Aerosol Scattering
3.2. Surface Properties
3.3. New Model for Topographic Correction
- -
- Direct solar irradiance: , in which is is the angle of incidence of the sun’s rays on an inclined terrain; it is given by: . The angles β and α are, respectively, the slope and orientation of the inclined surface.
- -
- Diffuse sky irradiance: , where the factor gsky takes into account the losses in intensity of the sky irradiance relative to the irradiance incident to a horizontal terrain. These losses are incurred because parts of the sky are masked by the surface itself, given its inclination.
- -
- Diffuse irradiance due to multiple Earth–atmosphere reflections: ; the factor genv considers the losses because parts of the hemisphere of the sky are masked due to the inclination of the surface itself and of the surrounding area (environment).
- -
- Ground radiance due to direct radiation:
- -
- Ground radiance due to diffuse sky radiation:
- -
- Ground radiance due to multiple Earth–atmosphere reflections:
3.4. Dark Targets Method for AOD Estimation
3.5. Sensors Integration
3.6. Software Implementation
4. Methodology and Data Used for Validation
- Calculation of atmospheric parameters: Temperature and relative humidity data for the image acquisition dates were obtained from the Environment Canada website [62] to estimate the water vapour content in the atmosphere as well as gaseous transmittances, as explained in Section 3.1. The AOD that was used for the calculation of the diffusion parameters was calculated from images using the dark targets method.
- Correction of sensor gain effect and atmospheric effects: we used five Landsat-5 TM images, two Landsat-7 ETM+ images, one SPOT-1 HRV image, and one SPOT-5 HRG image. Images were acquired over several years between June and August for an area (intersection of the scenes of these images) of approximately 80 km × 65 km around Montreal, Quebec, Canada (Figure 12; Table 1).By comparing the fifth and 95th percentiles of the DNs and ground reflectance values calculated by REFLECT, we assessed the correction of sensor gain, atmospheric effects (additive and multiplicative), and conditions of illumination and observation.
- Comparison of spectral signatures of selected materials: The ground reflectance values of three materials (water, asphalt, and vegetation) identified on the images of the scene in Figure 12 were compared with their simulated values from the USGS ASTER spectral library. The reflectance values of these materials for the spectral bands of the sensors used are simulated using following Equation (similar to Equation (14)):
- Comparison with ASD measurements: The ground reflectance values calculated for four ETM+ images acquired between 2000–2002 and one WorldView-2 image from 2011 were compared with the spectroradiometer (ASD FieldSpec HH Pro) measurements taken in agricultural fields in the Montérégie region, Quebec, Canada. The ASD reflectance values, which were measured concurrently with image acquisition, were incorporated by the spectral band of the images that was used according to the principle of Equation (16).
- Correction of adjacency effects: A series of nine Formosat-2 images (Taiwanese experimental sensor operated by SPOT Image, a spatial resolution of 8 m, fast revisit time [63]) acquired between 5 June and 3 July 2005 near Montreal were used to show correction of the adjacency effect (in addition to correction of sensor gain and atmospheric effects) for a vegetated surface surrounded by highly reflective surfaces in the red band.
- Topographic corrections for flat surfaces: One Ikonos image acquired on 29 August 2002 over the Paulatuk region, Northwest Territories, Canada, was used to test REFLECT’s topographic effects correction model on flat inclined surfaces (roofs of large buildings).
- Topographic corrections for a forest canopy: Three SPOT-1 HR images acquired during the same period in 1988, 1989, and 1990 over the mountainous region of Tarn, France, as well as a DEM (digital elevation model) of the region enabled us to validate the adaptation of the topographic correction model to a forest canopy.
5. Reflectance Retrieval for Global Scenes
5.1. Atmospheric Parameters for TM, ETM+, HRV, and HRG Images
5.1.1. Gaseous Transmittances
5.1.2. AOD from Dark Targets Method and Diffusion Parameters
5.2. Comparison between Low and High Values of DN and Ground Reflectance
5.3. Comparison between Values of DN and Ground Reflectance for Selected Materials
6. Reflectance Retrieval on Vegetation Targets
6.1. Comparison with ASD Measurements for Agricultural Targets
6.2. Formosat-2 Images of a Vegetal Surface: Atmospheric and Adjacency Effects
7. Reflectance Retrieval for Inclined Surfaces
7.1. Flat Inclined Surfaces on an Ikonos Image
7.2. Forest Canopy in Inclined Terrain on SPOT-1 Images
8. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AOD550 | aerosols optical depth at 550 nm |
E0(λ) | exoatmospheric solar spectral irradiance |
Edir | direct solar irradiance |
E diff, sky | diffuse sky irradiance |
Hr | relative humidity |
Hsat | height of the satellite |
Lsat | apparent luminance at the satellite level |
Ps | partial pressure of water vapour in saturated air |
Salb | spherical albedo of the atmosphere |
Tgas | total gas transmittance (descending and ascending path) |
Ta | ambient temperature |
is | angle of incidence of the solar radiation on an inclined terrain |
t↑dir, t↓dir | diffusion transmittances of the direct solar radiation in the ascending and descending paths |
t↑diff, t↓diff | diffusion transmittances of the diffuse solar radiation in the ascending and descending paths |
w | total water vapour content in the atmospheric column |
α | orientation of inclined surface |
β | slope of inclined surface |
β′ | corrected slope (for vegetation) |
λ | wavelength |
θs | solar zenith angle |
θv | sensor viewing angle (relative to the nadir) |
ρatm | atmospheric reflectance |
ρsat | reflectance of the target at the satellite level |
ρenv | reflectance of the environment |
ρB | bidirectional components of the target reflectance ρtar |
ρHD | hemispherical-directional components of the target reflectance ρtar |
τ | total optical thickness of the atmosphere |
φs | solar azimuth angle |
References
- Stratoulias, D.; Tolpekin, V.; de By, R.A.; Zurita-Milla, R.; Vasilios Retsios, V.; Bijker, W.; Alfi Hasan, M.; Vermote, E.A. Workflow for Automated Satellite Image Processing: From Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture. Remote Sens. 2017, 9, 1048. [Google Scholar] [CrossRef]
- Dodge, R.L.; Congalton, R.G. Meeting Environmental Challenges with Remote Sensing Imagery; American Geosciences Institute: Alexandria, VA, USA, 2013; pp. 6–77. ISBN 978-0-922152-94-0. [Google Scholar]
- Zhu, S.; Lei, B.; Wu, Y. Retrieval of Hyperspectral Surface Reflectance Based on Machine Learning. Remote Sens. 2018, 10, 323. [Google Scholar] [CrossRef]
- Richardson, A.J. Relating Landsat digital count values to ground reflectance for optically thin atmospheric conditions. Appl. Opt. 1982, 21, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Putsay, M.A. Simple atmospheric method for the short-wave satellite images. Int. J. Remote Sens. 2007, 13, 1549–1558. [Google Scholar] [CrossRef]
- Moran, M.S.; Bryant, R.; Holifield, C.D.; McElroy, S. A refined empirical line approach for retrieving surface refletance from EO-1 ALI images. Remote Sens. Environ. 2003, 78, 71–82. [Google Scholar] [CrossRef]
- Lavoie, A.; Cavayas, F.J.M.; Dubois, J.M. Algorithme de simulation du signal des masses d’eau côtières au niveau des capteurs satellite à haute résolution spatiale fondé sur le code atmosphérique 6S. Int. J. Remote Sens. 2001, 22, 1683–1708. [Google Scholar] [CrossRef]
- Cavayas, F.; Bouroubi, M.Y.; Vigneault, P.; Tremblay, N. Algorithme de correction d’images ETM+ de Landsat-7 fondé sur le code atmosphérique 6S et la méthode des cibles obscures. In Proceedings of the 25e Symposium Canadien sur la Télédétection: «De L’image à L’information», Montréal, QC, Canada, 14–17 October 2003. [Google Scholar]
- Bouroubi, M.Y.; Vigneault, P.; Cavayas, F.; Tremblay, N. Le Progiciel «EFLECT»pour la correction atmosphérique d’images satellites: Validation sur la Montérégie, Québec. Télédétection 2006, 6, 1–8. [Google Scholar]
- Vermote, E.F.; Tanré, D.J.L.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum: 6S User Guide Version 3; University of Maryland: College Park, MD, USA; Laboratoire d’optique atmosphérique CNRS: Paris, France, 2006. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Dover publication Inc.: New York, NY, USA, 1960; pp. 14–327. [Google Scholar]
- Teillet, P.M. Rayleigh Optical Depth Comparisons from Various Sources. Appl. Opt. 1990, 29, 1897–1900. [Google Scholar] [CrossRef] [PubMed]
- Petty, G.W. A First Course in Atmospheric Radiation, 2nd ed.; Sundog Publishing: Madison, WI, USA, 2006; p. 459. ISBN 09729033-1-3. [Google Scholar]
- Leckner, B. The spectral distribution of solar radiation at the earth’s surface—Elements of a model. Solar Energy 1987, 20, 143–150. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press Inc.: Vancouver, BC, Canada, 1983; p. 408. [Google Scholar]
- Van De Hulst, H.C. Light Scattering by Small Particles, 1st ed.; Dover Publications Inc.: Meniola, NY, USA, 1981; p. 470. [Google Scholar]
- Shettle, E.P.; Fenn, R.W. Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties; Air Force Geophysics Lab.: Saugus, MA, USA, 1979; pp. 12–87. [Google Scholar]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Cloud: The Software Package OPAC. B Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Aubé, M. Modélisation de L’évolution Spatiale et Temporelle de L’épaisseur Optique des Aérosols à L’échelle Régionale. Ph.D. Thesis, Département de Géographie et Télédétection, Faculté des Lettres et Sciences Humaines, Université de Sherbrooke, Sherbrooke, QC, Canada, 2003. [Google Scholar]
- Bouroubi, M.Y. REFLECT: Logiciel de Restitution des Réflectances au sol pour L’amélioration de la Qualité de L’information Extraite des Images Satellitales à haute Résolution Spatiale. Ph.D. Thesis, Département de Géographie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada, 2009. [Google Scholar]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A Review of Measurement-based Assessment of Aerosol Direct Radiative Effect and Forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef]
- Vermeulen, A.C.; Devaux, C.; Herman, M. Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarisation. I—Method. Appl. Opt. 2000, 39, 6207–6220. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, L. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Holben, B.N.; Vermote, E.; Kaufman, Y.J.; Tanré, D.; Kalb, V. Aerosol Retrieval over Land from AVHRR Data-Application for Atmospheric Correction. IEEE Trans. Geosci. Remote Sens. 1992, 30, 212–222. [Google Scholar] [CrossRef]
- Soufflet, V.; Tanré, D.; Royer, A.; O’Neill, N.T. Remote sensing of aerosols over boreal forest and lake water from AVHRR data. Remote Sens. Environ. 1997, 60, 22–34. [Google Scholar] [CrossRef]
- Ignatov, A.; Stowe, L. Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S Radiative Transfer Model; Part II: Quality control, probability distribution functions, information contents and consistency checks of retrievals. J. Atmos. Sci. 2002, 59, 313–334, 335–362. [Google Scholar] [CrossRef]
- Schmechting, C.; Carrere, V.; Dubuisson, P.; Roger, J.C.; Santer, R. Sensitivity analysis for the aerosol retrieval over land for MERIS. Int. J. Remote Sens. 2003, 24, 2921–2944. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, T.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. 1997, 102, 17051–17067. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Boucher, O.; Tanré, D.; Chin, M.; Remer, M.L.; Takemura, T. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 2005, 32, L17804. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS Products; Algorithm Theoretical Basis Document, ATBD-MOD-02; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1998; 85p. [Google Scholar]
- Vermote, E.F.; El Saleous, N.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Ichoku, C.; Remer, L.A.; Tanré, D.; Holben, B. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 2002, 29, MOD2-1–MOD2-4. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, R. Aerosol properties over bright reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Costa, M.J.; Silva, A.M.; Levizzani, V. Aerosol characterization and direct radiative forcing assessment over the ocean. Part I: Methodology and sensitivity analysis. J. Appl. Meteorol. 2004, 43, 1799–1817. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, L.L.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Tripathi, S.N.; Dey, S.; Chandel, A.; Srivastva, S.; Singh, R.P.; Holben, B. Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga basin, India. Ann. Geophys. 2005, 23, 1093–1101. [Google Scholar] [CrossRef]
- So, C.K.; Cheng, C.M.; Tsui, K.C. Weather and Environmental Monitoring Using MODIS AOD Data in Hong Kong, China. In Proceedings of the First International Symposium on Cloud-prone & Rainy Areas Remote Sensing, Hong Kong, China, 6–8 October 2005. [Google Scholar]
- Qiu, J. Broadband Extinction Method to Determine Aerosol Optical Depth from Accumulated Direct Solar Radiation. J. Appl. Meteorol. 2003, 42, 1611–1625. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum: 6S User Guide Version 2; University of Maryland: College Park, MD, USA; Laboratoire d’optique atmosphérique CNRS: Paris, France, 1997. [Google Scholar]
- Tanré, D.; Herman, M.; Deschamps, P.Y. Influence of the background contribution upon space measurements of ground reflectance. Appl. Opt. 1981, 20, 3676–3684. [Google Scholar] [CrossRef] [PubMed]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; Wiley Series in Remote Sensing; John Wiley Kr Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 76–177. ISBN 9780471723721. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum: User Manual; University of Maryland: College Park, MD, USA; Laboratoire D’optique Atmosphérique CNRS: Paris, France, 1994. [Google Scholar]
- Phong, B.T. Illumination for computer generated pictures. Commun. ACM 1975, 18, 311–317. [Google Scholar] [CrossRef] [Green Version]
- CUReT. Available online: http://www1.cs.columbia.edu/CAVE//exclude/curet/.index.html (accessed on 20 August 2018).
- Loutzenhiser, P.G.; Manz, H.; Felsmann, C.; Strachan, P.A.; Maxwell, G.M. An empirical validation of modeling solar gain through a glazing unit with external and internal shading screens. Appl. Thermal Eng. 2007, 27, 528–538. [Google Scholar] [CrossRef]
- Cavayas, F. Modelling and correction of topographic effect using multi-temporal satellite images. Can. J. Remote Sens. 1987, 13, 49–67. [Google Scholar] [CrossRef]
- Sandmeier, S.; Klaus, I. A Physically-Based Model to Correct Atmospheric and Illumination Effects in Optical Satellite Data of Rugged Terrain. IEEE Trans. Geosci. Remote Sens. 1997, 35, 708–717. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Dymond, J.R. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Richter, R. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. Int. J. Remote Sens. 1997, 18, 1099–1111. [Google Scholar] [CrossRef]
- Richter, R. ATCOR: Atmospheric and Topographic Correction; German Aerospace Center, Mars: Oberpfaffenhofen, Germany, 2004. [Google Scholar]
- Temps, R.C.; Coulson, K.L. Solar radiation incident upon slopes of different orientations. Sol. Energy 1977, 19, 331–333. [Google Scholar] [CrossRef]
- Mefti, A.; Bouroubi, M.Y.; Adane, A. Generation of hourly solar radiation for inclined surfaces using monthly mean sunshine duration in Algeria. Energy Convers. Manag. 2003, 44, 3125–3141. [Google Scholar] [CrossRef]
- Ouaidrari, H.; Vermote, E.F. Operational Atmospheric Correction of Landsat TM Data. Remote Sens. Environ. 1999, 70, 4–15. [Google Scholar] [CrossRef]
- Ahern, F.J.; Teillet, P.M.; Goodenough, D.G. Transformation of Atmospheric and Solar Illumination Conditions on the CCRS Image Analysis System. In Proceedings of the 5th Purdue Symposium on Machine Processings of Remotely Sensed Data, West Lafayette, IN, USA, 21–23 June 1979; pp. 34–52. [Google Scholar]
- Teillet, P.M.; O’Neill, N.T.; Kalinauskas, A.; Sturgeon, D.; Fedosejevs, G. A Dynamic Regression Algorithm for Incorporating Atmospheric Models into Image Correction Procedures. In Proceedings of the 1987 International Geoscience and Remote Sensing Symposium (IGARSS’87), Ann Arbor, MI, USA, 18–21 May 1987; p. 913918. [Google Scholar]
- Teillet, P.M. A status overview of earth observation calibration/validation for terrestrial applications. Canad. J. Remote Sens. 1997, 23, 291–298. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Bouroubi, Y.; Cavayas, F.; Tremblay, N. REFLECT: Software for Ground Reflectance Restitution to Enhance the Accuracy of the Information Extracted from Satellite Images. In Proceedings of the Conference of the Canadian Remote Sensing Society, the Prairie Summit, Regina, SK, Canada, 1–5 June 2010. [Google Scholar]
- Canadian Weather. Available online: http://www.weatheroffice.gc.ca/canada_e.html (accessed on 21 August 2018).
- Hagolle, O.; Dedieu, G.; Mougenot, B.; Debaecker, V.; Duchemin, B.; Meygret, A. Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images. Remote Sens. Environ. 2008, 112, 1689–1701. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Woodcock, E.C.; Seto, K.C.; Lenney, M.P.; Scott, A.M. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Ekstrand, S. Landsat TM-Based Forest Damage Assessment: Correction for Topographic Effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–161. [Google Scholar]
- Cavayas, F.; Teillet, P.M. Geometric model simulations of conifer canopy reflectance. In Proceedings of the 3rd International Colloquium on Spectral Signatures of Objects in Remote Sensing, Les Arcs, France, 16–20 December 1985; pp. 183–189. [Google Scholar]
- Minnaert, N. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403–410. [Google Scholar] [CrossRef]
- Murakami, T. Minnaert constant of several forest types from SPOT/HRV data. J. Jpn. Soc. Photogramm. Remote Sens. 2002, 41, 47–55. [Google Scholar] [CrossRef]
- Blesius, L.; Weirich, F. The use of the Minnaert correction for land-cover classification in mountainous terrain. Int. J. Remote Sens. 2005, 26, 3831–3851. [Google Scholar] [CrossRef]
- Fuyi, T.; Mohammed, S.K.; Abdullah, K.; Lim, H.S.; Ishola, K.S. A comparison of Atmospheric Correction Techniques for Environmental Applications. In Proceedings of the International Conference on Space Science and Communication (IconSpace 2013), Melaka, Malaysia, 1–3 July 2013; Available online: https://ieeexplore.ieee.org/document/6599471 (accessed on 16 September 2013).
Images | Temperature (°C) | Relative Humidity (%) | Total Gaseous Transmittances (Tgas) | |||||
---|---|---|---|---|---|---|---|---|
Blue | Green | Red | NIR | MIR | ||||
TM | 17 June 1984 | 22 | 60 | 0.9931 | 0.9508 | 0.9492 | 0.9159 | 0.8723 |
25 July 1992 | 23 | 65 | 0.9932 | 0.9494 | 0.9473 | 0.9081 | 0.8647 | |
18 June 1996 | 22 | 46 | 0.9929 | 0.9522 | 0.9512 | 0.9268 | 0.8824 | |
27 August 1998 | 24 | 70 | 0.9929 | 0.9463 | 0.9439 | 0.8991 | 0.8560 | |
27 June 2005 | 27 | 56 | 0.9933 | 0.9495 | 0.9473 | 0.9061 | 0.8636 | |
ETM+ | 8 June 2001 | 20 | 42 | 0.9946 | 0.9595 | 0.9565 | 0.9470 | 0.9462 |
11 August 2001 | 23 | 43 | 0.9948 | 0.9588 | 0.9551 | 0.9391 | 0.9407 | |
HRV | 1 August 1987 | 21 | 42 | - | 0.9725 | 0.9588 | 0.9339 | - |
HRG | 29 July 2006 | 27 | 60 | - | 0.9675 | 0.9478 | 0.9069 | 0.9574 |
Band | TM | TM | TM | TM | TM | ETM+ | ETM+ | HRV | HRG |
---|---|---|---|---|---|---|---|---|---|
17 June 1984 | 25 July 1992 | 18 June 1996 | 27 August 1998 | 27 June 2005 | 8 June 2001 | 11 August 2001 | 1 August 1987 | 29 July 2006 | |
AOD550 | 0.12 | 0.11 | 0.06 | 0.23 | 0.11 | 0.06 | 0.07 | 0.10 | 0.22 |
tdir↓ | |||||||||
Blue | 0.7236 | 0.7114 | 0.7669 | 0.5977 | 0.7292 | 0.7670 | 0.7011 | - | - |
Green | 0.8124 | 0.8035 | 0.8536 | 0.6993 | 0.8164 | 0.8538 | 0.7962 | 0.7953 | 0.7079 |
Red | 0.8697 | 0.8633 | 0.9050 | 0.7751 | 0.8726 | 0.9103 | 0.8645 | 0.8626 | 0.7971 |
NIR | 0.9327 | 0.9293 | 0.9544 | 0.8745 | 0.9342 | 0.9561 | 0.9286 | 0.9302 | 0.8902 |
MIR | 0.9981 | 0.9980 | 0.9984 | 0.9972 | 0.9982 | 0.9983 | 0.9978 | - | 0.9971 |
tdiff↓ | |||||||||
Blue | 0.1009 | 0.1037 | 0.0840 | 0.1318 | 0.0996 | 0.0817 | 0.1035 | - | - |
Green | 0.0831 | 0.0858 | 0.0640 | 0.1199 | 0.0819 | 0.0640 | 0.0882 | 0.0885 | 0.1193 |
Red | 0.0627 | 0.0648 | 0.0456 | 0.0964 | 0.0617 | 0.0435 | 0.0645 | 0.0661 | 0.0919 |
NIR | 0.0279 | 0.0287 | 0.0197 | 0.0425 | 0.0275 | 0.0193 | 0.0293 | 0.0301 | 0.0405 |
MIR | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | 0.0000 |
tdir↑ | |||||||||
Blue | 0.7584 | 0.7584 | 0.8012 | 0.6795 | 0.7584 | 0.7918 | 0.7488 | - | - |
Green | 0.8372 | 0.8372 | 0.8762 | 0.7645 | 0.8372 | 0.8701 | 0.8306 | 0.8144 | 0.7425 |
Red | 0.8875 | 0.8875 | 0.9200 | 0.8259 | 0.8875 | 0.9206 | 0.8882 | 0.8760 | 0.8225 |
NIR | 0.9422 | 0.9422 | 0.9618 | 0.9042 | 0.9422 | 0.9613 | 0.9414 | 0.9372 | 0.9046 |
MIR | 0.9984 | 0.9984 | 0.9986 | 0.9979 | 0.9984 | 0.9985 | 0.9982 | - | 0.9975 |
tdiff↑ | |||||||||
Blue | 0.0924 | 0.0924 | 0.0745 | 0.1190 | 0.0924 | 0.0752 | 0.0926 | - | - |
Green | 0.0751 | 0.0751 | 0.0560 | 0.1051 | 0.0751 | 0.0582 | 0.0774 | 0.0826 | 0.1114 |
Red | 0.0563 | 0.0563 | 0.0396 | 0.0834 | 0.0563 | 0.0394 | 0.0561 | 0.0613 | 0.0849 |
NIR | 0.0253 | 0.0253 | 0.0172 | 0.0380 | 0.0253 | 0.0175 | 0.0258 | 0.0281 | 0.0379 |
MIR | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | 0.0000 |
ρatm | |||||||||
Blue | 0.0758 | 0.0727 | 0.0700 | 0.0859 | 0.0753 | 0.0728 | 0.0770 | - | - |
Green | 0.0426 | 0.0429 | 0.0378 | 0.0508 | 0.0423 | 0.0398 | 0.0460 | 0.0457 | 0.0535 |
Red | 0.0258 | 0.0262 | 0.0219 | 0.0335 | 0.0257 | 0.0215 | 0.0260 | 0.0246 | 0.0306 |
NIR | 0.0125 | 0.0126 | 0.0099 | 0.0183 | 0.0124 | 0.0099 | 0.0129 | 0.0105 | 0.0161 |
MIR | 0.0017 | 0.0017 | 0.0011 | 0.0030 | 0.0017 | 0.0012 | 0.0019 | - | 0.0027 |
Salb | |||||||||
Blue | 0.0863 | 0.0863 | 0.0898 | 0.0809 | 0.0863 | 0.0927 | 0.0887 | - | - |
Green | 0.0626 | 0.0626 | 0.0611 | 0.0642 | 0.0626 | 0.0637 | 0.0648 | 0.0691 | 0.0686 |
Red | 0.0459 | 0.0459 | 0.0416 | 0.0517 | 0.0459 | 0.0413 | 0.0457 | 0.0492 | 0.0524 |
NIR | 0.0277 | 0.0277 | 0.0222 | 0.0361 | 0.0277 | 0.0224 | 0.0280 | 0.0290 | 0.0360 |
MIR | 0.0072 | 0.0072 | 0.0042 | 0.0122 | 0.0072 | 0.0044 | 0.0075 | - | 0.0129 |
Band | TM | TM | TM | TM | TM | ETM+ | ETM+ | HRV | HRG |
---|---|---|---|---|---|---|---|---|---|
17 June 1984 | 25 July 1992 | 18 June 1996 | 27 August 1998 | 27 June 2005 | 8 June 2001 | 11 August 2001 | 1 August 1987 | 29 July 2006 | |
Fifth percentile of DN | |||||||||
Blue | 70 | 67 | 65 | 61 | 66 | 66 | 61 | - | - |
Green | 28 | 26 | 26 | 23 | 26 | 48 | 43 | 30 | 80 |
Red | 20 | 20 | 19 | 18 | 20 | 32 | 30 | 16 | 50 |
NIR | 12 | 19 | 13 | 12 | 13 | 17 | 17 | 14 | 17 |
MIR | 7 | 10 | 8 | 7 | 7 | 15 | 13 | - | 16 |
Fifth percentile of ρground | |||||||||
Blue | 0.039 | 0.041 | 0.037 | 0.031 | 0.034 | 0.029 | 0.031 | - | - |
Green | 0.047 | 0.045 | 0.046 | 0.039 | 0.041 | 0.033 | 0.036 | 0.034 | 0.039 |
Red | 0.029 | 0.031 | 0.030 | 0.027 | 0.031 | 0.027 | 0.026 | 0.027 | 0.028 |
NIR | 0.030 | 0.045 | 0.032 | 0.027 | 0.029 | 0.034 | 0.036 | 0.041 | 0.038 |
MIR | 0.008 | 0.011 | 0.010 | 0.007 | 0.008 | 0.011 | 0.009 | - | 0.010 |
95th percentile of DN | |||||||||
Blue | 118 | 98 | 105 | 85 | 105 | 117 | 97 | - | - |
Green | 58 | 45 | 52 | 37 | 51 | 106 | 83 | 57 | 205 |
Red | 65 | 48 | 61 | 41 | 60 | 123 | 93 | 44 | 175 |
NIR | 132 | 133 | 134 | 118 | 132 | 141 | 122 | 101 | 171 |
MIR | 137 | 103 | 132 | 88 | 131 | 161 | 131 | - | 185 |
95th percentile de ρground | |||||||||
Blue | 0.132 | 0.115 | 0.121 | 0.112 | 0.111 | 0.120 | 0.010 | - | - |
Green | 0.146 | 0.123 | 0.141 | 0.118 | 0.133 | 0.142 | 0.119 | 0.121 | 0.136 |
Red | 0.151 | 0.124 | 0.149 | 0.119 | 0.141 | 0.153 | 0.135 | 0.128 | 0.143 |
NIR | 0.494 | 0.514 | 0.495 | 0.512 | 0.487 | 0.511 | 0.495 | 0.484 | 0.501 |
MIR | 0.308 | 0.283 | 0.305 | 0.275 | 0.299 | 0.309 | 0.295 | - | 0.301 |
Materials | Site | Coordinates |
---|---|---|
Water (Lakes) | Hertel lake, Mont St-Hilaire | 45°32′40″N; 73°09′00″W |
Seigneurie lake, Mont St-Bruno | 45°32′50″N; 73°19′35″W | |
L’Achigan lake, Laurentides | 45°56′30″N; 73°58′00″W | |
Connelly lake, Laurentides | 45°53′50″N; 73°58′00″W | |
Asphalt (Roads) | Highways arround Montreal | |
Deciduous trees | Ste-Thérèse-de-Blainville | 45°43′15″N; 73°49′00″W |
Verchères | 45°43′16″N; 73°18′36″W |
Band | TM | TM | TM | TM | TM | ETM+ | ETM+ | HRV | HRG |
---|---|---|---|---|---|---|---|---|---|
17 June 1984 | 25 July 1992 | 18 June 1996 | 27 August 1998 | 27 June 2005 | 8 June 2001 | 11 August 2001 | 1 August 1987 | 29 July 2006 | |
DN of water (lakes) | |||||||||
Blue | 66 | 65 | 64 | 59 | 63 | 62 | 60 | - | - |
Green | 22 | 23 | 21 | 20 | 21 | 36 | 36 | 40 | 101 |
Red | 15 | 18 | 16 | 14 | 16 | 24 | 25 | 22 | 63 |
NIR | 13 | 20 | 15 | 14 | 15 | 13 | 12 | 16 | 19 |
MIR | 8 | 9 | 7 | 6 | 7 | 11 | 10 | - | 21 |
DN of asphalt (roads) | |||||||||
Blue | 101 | 88 | 90 | 78 | 91 | 94 | 89 | - | - |
Green | 46 | 40 | 41 | 34 | 41 | 76 | 75 | 50 | 151 |
Red | 46 | 40 | 43 | 35 | 42 | 73 | 78 | 37 | 136 |
NIR | 69 | 69 | 69 | 60 | 71 | 74 | 64 | 59 | 68 |
MIR | 88 | 77 | 81 | 69 | 75 | 86 | 94 | - | 114 |
DN of vegetation (deciduous trees) | |||||||||
Blue | 73 | 70 | 67 | 63 | 67 | 68 | 63 | - | - |
Green | 32 | 29 | 29 | 24 | 28 | 54 | 47 | 32 | 90 |
Red | 22 | 22 | 21 | 19 | 21 | 35 | 32 | 17 | 58 |
NIR | 116 | 112 | 122 | 87 | 123 | 124 | 100 | 88 | 118 |
MIR | 82 | 67 | 74 | 57 | 75 | 82 | 71 | - | 109 |
Band | ASTER Lib. | TM | TM | TM | TM | TM | ETM+ | ETM+ | HRV | HRG |
---|---|---|---|---|---|---|---|---|---|---|
17 June 1984 | 25 July 1992 | 18 June 1996 | 27 August 1998 | 27 June 2005 | 8 June 2001 | 11 August 2001 | 1 August 1987 | 29 July 2006 | ||
ρground of water (lakes) | ||||||||||
Blue | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | - | - |
Green | 0.04 | 0.03 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.04 | 0.05 |
Red | 0.03 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.01 | 0.04 | 0.03 |
NIR | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.03 | 0.02 |
MIR | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.01 |
ρground of asphalt (roads) | ||||||||||
Blue | 0.15 | 0.10 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | - | - |
Green | 0.19 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | 0.09 | 0.10 | 0.10 | 0.12 |
Red | 0.22 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.11 |
NIR | 0.26 | 0.25 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 | 0.24 | 0.25 | 0.23 |
MIR | 0.37 | 0.20 | 0.19 | 0.19 | 0.18 | 0.17 | 0.18 | 0.20 | - | 0.19 |
ρground of vegetation (deciduous trees) | ||||||||||
Blue | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.04 | 0.03 | 0.02 | - | - |
Green | 0.09 | 0.07 | 0.07 | 0.06 | 0.05 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 |
Red | 0.06 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 |
NIR | 0.55 | 0.42 | 0.43 | 0.44 | 0.40 | 0.44 | 0.45 | 0.40 | 0.39 | 0.40 |
MIR | 0.31 | 0.18 | 0.16 | 0.17 | 0.15 | 0.17 | 0.17 | 0.16 | - | 0.18 |
Bands | Roof 1 | Roof 2 | Roof 3 | ||||
---|---|---|---|---|---|---|---|
Bright Side | Dark Side | Bright Side | Dark Side | Bright Side | Dark Side | ||
Orientation (°) | 225 | 45 | 225 | 45 | 135 | 315 | |
DNs | Blue | 35 | 23 | 40 | 26 | 38 | 25 |
Green | 26 | 17 | 31 | 18 | 33 | 17 | |
Red | 16 | 10 | 22 | 10 | 25 | 11 | |
Reflectance without topographic corrections | Blue | 0.166 | 0.065 | 0.2087 | 0.0903 | 0.192 | 0.082 |
Green | 0.107 | 0.051 | 0.1377 | 0.0576 | 0.150 | 0.051 | |
Red | 0.097 | 0.056 | 0.1377 | 0.0560 | 0.158 | 0.063 | |
Reflectance with topographic corrections | Blue | 0.123 | 0.109 | 0.152 | 0.141 | 0.144 | 0.145 |
Green | 0.082 | 0.081 | 0.102 | 0.093 | 0.109 | 0.095 | |
Red | 0.076 | 0.081 | 0.104 | 0.097 | 0.118 | 0.122 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouroubi, Y.; Batita, W.; Cavayas, F.; Tremblay, N. Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT. Remote Sens. 2018, 10, 1638. https://doi.org/10.3390/rs10101638
Bouroubi Y, Batita W, Cavayas F, Tremblay N. Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT. Remote Sensing. 2018; 10(10):1638. https://doi.org/10.3390/rs10101638
Chicago/Turabian StyleBouroubi, Yacine, Wided Batita, François Cavayas, and Nicolas Tremblay. 2018. "Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT" Remote Sensing 10, no. 10: 1638. https://doi.org/10.3390/rs10101638
APA StyleBouroubi, Y., Batita, W., Cavayas, F., & Tremblay, N. (2018). Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT. Remote Sensing, 10(10), 1638. https://doi.org/10.3390/rs10101638