Mapping of Intrusive Complex on a Small Scale Using Multi-Source Remote Sensing Images
Abstract
:1. Introduction
2. Study Area and Geological Setting
3. Materials and Method
3.1. Data
3.2. Synergy of Multi-Source Remote Sensing Data
3.2.1. Spectral Synergy Process
3.2.2. Image Fusion and Synergistic Dataset Construction
- (1)
- It outperforms most other CS pan-sharpening methods in both maximizing image sharpness and minimizing color distortion [40]. It has the least spectral distortion among the current CS fusion methods and is widely used in remote sensing geological community.
- (2)
- (3)
- As shown in the results of Ghimire et al.’s study, GS had the least impact on most vegetation indices’ (VI) quality when SSR reduced, and on the whole, it showed better performance among the fusion methods they used [27]. Since principle of mineral index is spectral band math similar to VI, it can be inferred that the application of GS in this study could also have stable results.
3.3. Image Enhancement and the Intrusive Complex Mapping Method
3.3.1. Image Enhancement by BR, RBD, and False-Color
3.3.2. Image Enhancement by BRM and PCA
4. Results
4.1. Synergy of ASTER, GF-2, and Sentinel-2 Bands
4.2. Band Ratio, Relative Absorption-Band Depth, and False-Color Enhancement Results
4.3. BRM and PCA Enhancement Results
4.4. Intrusion Complex Mapping Result
5. Discussion
5.1. Comparsion between Fused Bands and Original Bands in SWIR When Using the BR and RBD
5.2. Comparsion of Datasets with and without Spectral Synergy When Using BRM-PCA
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soloviev, S.G. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit in Kyrgyzstan, Tien Shan. Miner. Depos. 2015, 50, 187–220. [Google Scholar] [CrossRef]
- Farahbakhsh, E.; Shirmard, H.; Bahroudi, A.; Eslamkish, T. Fusing ASTER and QuickBird-2 Satellite Data for Detailed Investigation of Porphyry Copper Deposits Using PCA; Case Study of Naysian Deposit. Iran. J. Indian Soc. Remote Sens. 2016, 44, 525–537. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Cloutis, E.A.; Gaffey, M.J.; Jackowski, T.L.; Reed, K.L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. Solid Earth 1986, 91, 11641–11653. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res. Solid Earth 1989, 94, 9192–9202. [Google Scholar] [CrossRef]
- Abrams, M.; Abbott, E.; Kahle, A. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows. J. Geophys. Res. Solid Earth 1991, 96, 475–484. [Google Scholar] [CrossRef]
- Guha, A.; Chakraborty, D.; Ekka, A.B.; Pramanik, K.; Kumar, K.V.; Chatterjee, S.; Subramanium, S.; Rao, D.A. Spectroscopic study of rocks of Hutti-Maski schist belt, Karnataka. J. Geol. Soc. India 2012, 79, 335–344. [Google Scholar] [CrossRef]
- Massironi, M.; Bertoldi, L.; Calafa, P.; Visona, D.; Bistacchi, A.; Giardino, C.; Schiavo, A. Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco). Geosphere 2008, 4, 736–759. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Sousa, F.J.; Sousa, D.J. Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in California from Multispectral and Hyperspectral Optical Remote Sensing. Remote Sens. 2019, 11, 2528. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhou, J.; Jiang, D.; Zhuang, D.F.; Mansaray, L.R.; Zhang, B. Targeting Mineral Resources with Remote Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China. Remote Sens. 2013, 5, 3156–3171. [Google Scholar] [CrossRef] [Green Version]
- Abd-El Monsef, H.; Khalifa, I.H.; Faisal, M. Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and WorldView II images at Wadi Rofaiyed, South Sinai, Egypt. Arab. J. Geosci. 2015, 8, 9285–9300. [Google Scholar] [CrossRef]
- Robson, A.; Rahman, M.M.; Muir, J. Using World View Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sens. 2017, 9, 1223. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhao, B.; Wu, J.; Zhang, S.; Pilz, J.; Yang, F. An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternary-Covered region North Baoji District of China. Geol. J. 2018, 53, 352–363. [Google Scholar] [CrossRef]
- Yang, M.; Kang, L.; Chen, H.; Zhou, M.; Zhang, J. Lithological mapping of East Tianshan area using integrated data fused by Chinese GF-1 PAN and ASTER multi-spectral data. Open Geosci. 2018, 10, 532–543. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Chatterjee, R.S.; Prabakaran, B.; Jha, V.K. Fusion of surface relief data with high spectral and spatial resolution satellite remote sensor data for deciphering geological information in a mature topographic terrain. Int. J. Remote Sens. 2003, 24, 4761–4775. [Google Scholar] [CrossRef]
- Hadigheh, S.M.H.; Ranjbar, H. Lithological Mapping in the Eastern Part of the Central Iranian Volcanic Belt Using Combined ASTER and IRS data. J. Indian Soc. Remote Sens. 2013, 41, 921–931. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhang, L.; Xie, F. Preprocessing and fusion analysis of GF-2 satellite Remote-sensed spatial data. In Proceedings of the International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 6–8 July 2018. [Google Scholar]
- Ren, K.; Sun, W.W.; Meng, X.C.; Yang, G.; Du, Q. Fusing China GF-5 Hyperspectral Data with GF-1, GF-2 and Sentinel-2A Multispectral Data: Which Methods Should Be Used? Remote Sens. 2020, 12, 882. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, P.; Lei, D.; Juan, N. Effect of Image Fusion on Vegetation Index Quality-A Comparative Study from Gaofen-1, Gaofen-2, Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. 2020, 12, 1550. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Tian, S.F.; Di, B.G. Extracting mineral alteration information using WorldView-3 data. Geosci. Front. 2016, 8, 1051–1062. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.F.; Ge, J.; Sun, Y.Q. Assessment of WorldView-3 Data for Lithological Mapping. Remote Sens. 2017, 9, 1132. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xiao, W.J.; Zhao, G.C. Introduction to tectonics of China. Gondwana Res. 2013, 23, 1189–1206. [Google Scholar] [CrossRef]
- Xinjiang Bureau of Geological and Mineral Development. Report of Regional Geological Survey of P. R. China, K46E022007 & K46E0020008, Scale 1:50,000; China Geological Survey Special Publication: Xingjiang, China, 1996. [Google Scholar]
- Lobo, F.D.; Souza, P.W.M.; Novo, E.M.L.D.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Xu, Y.Y.; Wan, B.; Wu, X.C.; Yi, G.H. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geol. Rev. 2018, 101, 384–397. [Google Scholar] [CrossRef]
- Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Yuan, Q.Q.; Wei, Y.C.; Meng, X.C.; Shen, H.F.; Zhang, L.P. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G. Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F. A New Method for MS plus Pan Image Fusion Assessment without Reference. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July—4 August 2006. [Google Scholar]
- Ehlers, M. Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics Preservation. In Proceedings of the 4th International Symposium on Visual Computing, Las Vegas, NV, USA, 1–3 December 2008. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent US6011875, 4 January 2000. [Google Scholar]
- Maurer, T. How to Pan-shrpin Images Using the Gram-Schmidt Pan-sharpen Method—A Recipe. In Proceedings of the International-Society-for-Photogrammetry-and-Remote-Sensing Hannover Workshop, Hannover, Germany, 21–24 May 2013. [Google Scholar]
- Pande, H.; Tiwari, P.S.; Dobhal, S. Analyzing Hyper-Spectral and Multi-Spectral Data Fusion in Spectral Domain. J. Indian Soc. Remote Sens. 2009, 37, 395–408. [Google Scholar] [CrossRef]
- Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of hydrothermaly altered rocks and unaltered rocks in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Crowley, J.K.; Brickey, D.W.; Rowan, L.C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 1989, 29, 121–134. [Google Scholar] [CrossRef]
- Ge, W.Y.; Cheng, Q.M.; Jing, L.H.; Armenakis, C.; Ding, H.F. Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Adv. Space Res. 2018, 62, 1702–1716. [Google Scholar] [CrossRef]
- Hassan, S.M.; El Kazzaz, Y.A.; Taha, M.M.N.; Mohammad, A.T. Late Neoproterozoic basement rocks of Meatiq area, Central Eastern Desert, Egypt: Petrography and remote sensing characterizations. J. Afr. Earth Sci. 2017, 131, 14–31. [Google Scholar] [CrossRef]
- Rajendran, S.; Nasir, S. Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite-magnetite-awaruite occurrences in Wadi Hibi, Northern Oman Mountain: Discrimination through ASTER mapping. Ore Geol. Rev. 2014, 62, 211–226. [Google Scholar] [CrossRef]
- Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Pour, A.B.; Sohrabi, G. A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 2020, 12, 105. [Google Scholar] [CrossRef] [Green Version]
- Zoheir, B.; Emam, A.; Abdel-Wahed, M.; Soliman, N. Multispectral and Radar Data for the Setting of Gold Mineralization in the South Eastern Desert, Egypt. Remote Sens. 2019, 11, 1450. [Google Scholar] [CrossRef] [Green Version]
- Askari, G.; Pour, A.B.; Pradhan, B.; Sarfi, M.; Nazemnejad, F. Band Ratios Matrix Transformation (BRMT): A Sedimentary Lithology Mapping Approach Using ASTER Satellite Sensor. Sensors 2018, 18, 3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez, P.S.; Kwarteng, A.Y. Extracting Spectral Contrast in Landsat Thematic Mapper Image Data Using Selective Principal Component Analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Crosta, A.P.; Moore, J.M. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minas Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. In Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October 1989; pp. 1173–1187. [Google Scholar]
- Klonus, S.; Ehlers, M. Performance of evaluation methods in image fusion. In Proceedings of the 12th International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
Sensor | Revisit Time (day) | Spectral Bands | Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|---|
Gaofen2 | 5 days when side swing is applied | Pan | 450–900 | 1 |
MS Band1 | 450–520 | 4 | ||
MS Band2 | 520–590 | 4 | ||
MS Band3 | 630–690 | 4 | ||
MS Band4 | 770–790 | 4 | ||
ASTER | 16 (Unable to obtain new valid data now) | VNIR Band1 | 520–600 | 15 |
VNIR Band2 | 630–690 | 15 | ||
VNIR Band3 | 760–860 | 15 | ||
SWIR Band4 | 1600–1700 | 30 | ||
SWIR Band5 | 2145–2185 | 30 | ||
SWIR Band6 | 2185-2225 | 30 | ||
SWIR Band7 | 2235–2285 | 30 | ||
SWIR Band8 | 2295–2365 | 30 | ||
SWIR Band9 | 2360–2430 | 30 | ||
TIR Band10 | 8125–8475 | 90 | ||
TIR Band11 | 8475–8825 | 90 | ||
TIR Band12 | 8925–9275 | 90 | ||
TIR Band13 | 10,250–10,950 | 90 | ||
TIR Band14 | 10,950–11,650 | 90 | ||
Sentinel-2 | 10 (5 days based on 2 satellites) | Band1 | 433–453 | 60 |
Band2 | 457–522 | 10 | ||
Band3 | 542–577 | 10 | ||
Band4 | 650–680 | 10 | ||
Band5 | 679–718 | 20 | ||
Band6 | 732–747 | 20 | ||
Band7 | 773–793 | 20 | ||
Band8 | 784–899 | 10 | ||
Band8a | 855–885 | 20 | ||
Band9 | 935–955 | 60 | ||
Band10 | 1360–1390 | 60 | ||
Band11 | 1565–1655 | 20 | ||
Band12 | 2100–2280 | 20 |
Fitting Bands | Linear | Quadratic Polynomial | Logarithmic | Exponential |
---|---|---|---|---|
G Band2—A Band1 | 0.820728 | 0.821575 | 0.812235 | 0.810457 |
G Band3—A Band2 | 0.801061 | 0.802802 | 0.795070 | 0.787344 |
G Band4—A Band3 | 0.799412 | 0.801144 | 0.793241 | 0.785993 |
S Band3—A Band1 | 0.763109 | 0.764744 | 0.764560 | 0.749160 |
S Band4—A Band2 | 0.750512 | 0.752388 | 0.752319 | 0.732972 |
S Band8—A Band3 | 0.711796 | 0.713203 | 0.713105 | 0.692518 |
Band2 | Band3 | Band4 | |
---|---|---|---|
Band1 | 0.993710 | 0.981188 | 0.971365 |
Band3 | Band4 | Band8 | |
---|---|---|---|
Band5 | 0.983793 | 0.987621 | 0.986688 |
Band6 | 0.983378 | 0.987674 | 0.987220 |
Band7 | 0.983346 | 0.987734 | 0.987899 |
Band8A | 0.981903 | 0.986802 | 0.987719 |
Original Bands | A Band1 | A Band2 | A Band3 | G Band1 | G Band2 | G Band3 | G Band4 |
Mean | 3815.15 | 3914.88 | 4298.12 | 1497.50 | 1606.74 | 1819.46 | 1845.82 |
Stddev | 577.35 | 607.61 | 619.10 | 283.97 | 336.01 | 400.47 | 403.77 |
Original Bands | S Band3 | S Band4 | S Band8 | S Band5 | S Band6 | S Band7 | S Band8A |
Mean | 2198.14 | 2470.62 | 2625.94 | 2555.55 | 2524.84 | 2544.16 | 2510.44 |
Stddev | 221.70 | 264.81 | 287.11 | 273.25 | 272.62 | 274.00 | 269.96 |
Synergistic Bands | G Band1 | G Band2 | G Band3 | G Band4 | |||
Mean | 3633.57 | 3814.64 | 3912.78 | 4295.49 | |||
Stddev | 484.32 | 563.50 | 582.29 | 593.17 | |||
Synergistic Bands | S Band3 | S Band4 | S Band8 | S Band5 | S Band6 | S Band7 | S Band8A |
Mean | 3780.25 | 3877.06 | 4257.97 | 4057.14 | 3992.17 | 4088.60 | 4016.88 |
Stddev | 530.70 | 560.35 | 575.47 | 557.79 | 562.91 | 567.42 | 565.80 |
Spectral Bands | Source Image | Source Band | Wavelength | Spectral Bands | Source Image | Source Band | Wavelength |
---|---|---|---|---|---|---|---|
Band 1 | GF-2 | Band1 | 450–520 | Band 8 | Sentinel-2 | Band8a | 855–875 |
Band 2 | GF-2 | Band2 | 520–590 | Band 9 | ASTER | Band4 | 1600–1700 |
Band 3 | GF-2 | Band3 | 630–690 | Band 10 | ASTER | Band5 | 2145–2185 |
Band 4 | Sentinel-2 | Band5 | 698–713 | Band 11 | ASTER | Band6 | 2185–2225 |
Band 5 | Sentinel-2 | Band6 | 733–748 | Band 12 | ASTER | Band7 | 2235–2285 |
Band 6 | Sentinel-2 | Band7 | 765–785 | Band 13 | ASTER | Band8 | 2295–2365 |
Band 7 | GF-2 | Band4 | 770–790 | Band 14 | ASTER | Band9 | 2360–2430 |
Band Ratio | Spectral Synergy | Without Spectral Synergy | Band Ratio | Spectral Synergy | Without Spectral Synergy |
---|---|---|---|---|---|
B1/B2 | 0.953589 | 0.934671 | B1/B9 | 0.656837 | 0.263652 |
B1/B3 | 0.929816 | 0.830386 | B1/B10 | 0.639677 | 0.257225 |
B1/B4 | 0.885573 | 0.557248 | B1/B11 | 0.65567 | 0.263654 |
B1/B5 | 0.90007 | 0.563648 | B1/B12 | 0.65616 | 0.263572 |
B1/B6 | 0.876937 | 0.558797 | B1/B13 | 0.744578 | 0.298691 |
B1/B7 | 0.841202 | 0.815966 | B1/B14 | 0.621478 | 0.249575 |
B1/B8 | 0.89301 | 0.566098 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, D.; Duan, J.; Hu, T. Mapping of Intrusive Complex on a Small Scale Using Multi-Source Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2020, 9, 543. https://doi.org/10.3390/ijgi9090543
Zhang Y, Zhang D, Duan J, Hu T. Mapping of Intrusive Complex on a Small Scale Using Multi-Source Remote Sensing Images. ISPRS International Journal of Geo-Information. 2020; 9(9):543. https://doi.org/10.3390/ijgi9090543
Chicago/Turabian StyleZhang, Yuzhou, Dengrong Zhang, Jinwei Duan, and Tangao Hu. 2020. "Mapping of Intrusive Complex on a Small Scale Using Multi-Source Remote Sensing Images" ISPRS International Journal of Geo-Information 9, no. 9: 543. https://doi.org/10.3390/ijgi9090543