Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory
Abstract
:1. Introduction
2. Methodology for Determination of the Exponent of Reduction of Settling Velocity
2.1. Definition of the Tsallis Entropy
2.2. Specification of Constraint
2.3. Maximization of Entropy
2.4. Estimation of Lagrange Multipliers
2.5. Hypothesis on the Cumulative Distribution Function
2.6. Derivation of the Expression of
3. Comparison with Existing Experimental Data
4. Discussion
4.1. Comparison with other Deterministic Models
4.2. Comparison with the Shannon Entropy-Based Model
4.3. Estimation of the Hindered Settling Velocity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maggi, F. The settling velocity of mineral, biomineral, and biological particles and aggregates in water. J. Geophys. Res. Ocean 2013, 118, 2118–2132. [Google Scholar] [CrossRef] [Green Version]
- Strom, K.; Keyvani, A. An explicit full-range settling velocity equation for mud flocs. J. Sediment. Res. 2011, 81, 921–934. [Google Scholar] [CrossRef]
- Ferguson, R.; Church, M. A simple universal equation for grain settling velocity. J. Sediment. Res. 2004, 74, 933–937. [Google Scholar] [CrossRef]
- Cheng, N.S. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng. 1997, 123, 149–152. [Google Scholar] [CrossRef]
- Khelifa, A.; Hill, P.S. Models for effective density and settling velocity of flocs. J. Hydraul. Res. 2006, 44, 390–401. [Google Scholar] [CrossRef]
- Hallermeier, R.J. Terminal settling velocity of commonly occurring sand grains. Sedimentology 1981, 28, 859–865. [Google Scholar] [CrossRef]
- Winterwerp, J.C. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraul. Res. 1998, 36, 309–326. [Google Scholar] [CrossRef]
- Pal, D.; Ghoshal, K. Hindered settling with an apparent particle diameter concept. Adv. Water Resour. 2013, 60, 178–187. [Google Scholar] [CrossRef]
- Winterwerp, J.C. On the flocculation and settling velocity of estuarine mud. Cont. Shelf Res. 2002, 22, 1339–1360. [Google Scholar] [CrossRef]
- Cuthbertson, A.; Dong, P.; King, S.; Davies, P. Hindered settling velocity of cohesive/non-cohesive sediment mixtures. Coast. Eng. 2008, 55, 1197–1208. [Google Scholar] [CrossRef]
- Richardson, J.; Zaki, W. Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Eng. 1954, 32, 35–53. [Google Scholar] [CrossRef]
- Cheng, N.S. Effect of concentration on settling velocity of sediment particles. J. Hydraul. Eng. 1997, 123, 728–731. [Google Scholar] [CrossRef]
- Kumbhakar, M.; Kundu, S.; Ghoshal, K. Hindered settling velocity in particle-fluid mixture: A theoretical study using the entropy concept. J. Hydraul. Eng. 2018, 143, 06017019. [Google Scholar] [CrossRef]
- Garside, J.; Al-Dibouni, M.R. Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems. Ind. Eng. Chem. Process Des. Dev. 1977, 16, 206–214. [Google Scholar] [CrossRef]
- Chien, N.; Wan, Z. Sediment Transport Mechanics; ASCE: Reston, VA, USA, 1983. [Google Scholar]
- Baldock, T.; Tomkins, M.; Nielsen, P.; Hughes, M. Settling velocity of sediments at high concentrations. Coast. Eng. 2004, 51, 91–100. [Google Scholar] [CrossRef]
- Tomkins, M.R.; Baldock, T.E.; Nielsen, P. Hindered settling of sand grains. Sedimentology 2005, 52, 1425–1432. [Google Scholar] [CrossRef]
- Van, L.A.; Pham Van Bang, D. Hindered settling of sand/mud flocs mixtures: From model formulation to numerical validation. Adv. Water Resour. 2013, 53, 1–11. [Google Scholar] [CrossRef]
- Cui, H.; Singh, V.P. One dimensional velocity distribution in open channels using Tsallis entropy. J. Hydrol. Eng. 2014, 19, 290–298. [Google Scholar] [CrossRef]
- Luo, H.; Singh, V.P. Entropy theory for two-dimensional velocity distribution. J. Hydrol. Eng. 2011, 16, 303–315. [Google Scholar] [CrossRef]
- Cui, H.; Singh, V.P. Two dimensional velocity distribution in open channels using Tsallis entropy. J. Hydrol. Eng. 2013, 18, 331–339. [Google Scholar] [CrossRef]
- Cui, H.; Singh, V.P. Suspended sediment concentration in open channels using Tsallis entropy. J. Hydrol. Eng. 2013, 19, 966–977. [Google Scholar] [CrossRef]
- Kumbhakar, M.; Ghoshal, K.; Singh, V.P. Derivation of Rouse equation for sediment concentration using Shannon entropy. Physica A 2017, 465, 494–499. [Google Scholar] [CrossRef]
- Cui, H.; Singh, V.P. Computation of suspended sediment discharge in open channels by combining Tsallis Entropy-based methods and empirical formulas. J. Hydrol. Eng. 2014, 19, 18–25. [Google Scholar] [CrossRef]
- Martins, P.D.; Poleto, C. Entropy for determination of suspended sediment concentration: Parameter related to granulometry. J. Environ. Eng. 2018, 144, 0401711. [Google Scholar] [CrossRef]
- Singh, V.P.; Cui, H. Modeling sediment concentration in debris flow by Tsallis entropy. Physica A 2015, 420, 49–58. [Google Scholar] [CrossRef]
- Sterling, M.; Knight, D. An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow. Stoch. Environ. Res. Risk Assess 2002, 16, 127–142. [Google Scholar] [CrossRef]
- Bonakdari, H.; Sheikh, Z.; Tooshmalani, M. Comparison between Shannon and Tsallis entropies for prediction of shear stress distribution in open channels. Stoch. Environ. Res. Risk Assess 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Singh, V.P.; Sivakumar, B.; Cui, H.J. Tsallis entropy theory for modelling in water engineering: A review. Entropy 2017, 19, 641. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Singh, V.P. Tsallis entropy theory for derivation of infiltration equations. Trans. ASABE 2010, 53, 447–463. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics I. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the rationale of maximum entropy methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Wilhelm, R.H.; Kwauk, M. Fluidization of solid particles. Chem. Eng. Prog. 1948, 44, 201–218. [Google Scholar]
- Fouda, A.E.; Capes, C.E. Hydrodynamic particle volume and fluidized bed expansion. Can. J. Chem. Eng. 1977, 55, 386–391. [Google Scholar] [CrossRef]
- Cleasby, J.L.; Woods, C. Intermixing of dual media and multi-media granular filters. J. Am. Water Works Assoc. 1975, 67, 197–203. [Google Scholar] [CrossRef]
- Cleasby, J.L.; Fan, K.S. Predicting fluidization and expansion of filter media. J. Environ. Eng. Div. Proc. ASCE 1981, 107, 455–471. [Google Scholar]
- Jottrand, R. An experimental study of the mechanism of fluidisation. J. Appl. Chem. 1952, 2, S17–S26. [Google Scholar]
- Song, Z.Y.; Wu, T.T.; Xu, F.M.; Li, R.J. A simple formula for predicting settling velocity of sediment particles. Water Sci. Eng. 2008, 1, 37–43. [Google Scholar] [Green Version]
Model Name | Formulation |
---|---|
Richardson and Zaki [11] model | = 4.65, for < 0.2 |
= 4.4×, for 0.2 < < 1 | |
= 4.4×, for 1 < < 500 | |
= 2.4, for > 500 | |
Garside and Al-Dibouni [14] model | = |
Chien and Wan [15] model | = 4.91 at low |
is determined by graphical curve at moderate | |
= 2.25 at high | |
Cheng [12] model | = |
Pal and Ghoshal [8] model | =, where , is the maximum volumetric concentration of suspended particle |
Model Name | NRMSE | |
---|---|---|
Richardson and Zaki [11] model | 0.88 | 0.22 |
Garside and Al-Dibouni [14] model | 0.87 | 0.15 |
Chien and Wan [15] model | 0.81 | 0.15 |
Cheng [12] model | 0.88 | 0.21 |
Pal and Ghoshal [8] model | 0.86 | 0.14 |
The Tsallis entropy-based model | 0.90 | 0.10 |
Experimental Data Sets | Model Name | NRMSE (×10−2) | |
---|---|---|---|
dp = 0.35mm | Tsallis entropy-based model | 9.840 | 5.163 |
Shannon entropy-based model | 9.835 | 5.683 | |
dp = 0. 5mm | Tsallis entropy-based model | 9.890 | 8.484 |
Shannon entropy-based model | 9.851 | 9.498 | |
dp = 1.85mm | Tsallis entropy-based model | 9.977 | 7.193 |
Shannon entropy-based model | 9.971 | 10.770 | |
dp = 3mm | Tsallis entropy-based model | 9.953 | 23.350 |
Shannon entropy-based model | 9.944 | 17.200 | |
dp = 0.22mm | Tsallis entropy-based model | 9.913 | 9.287 |
Shannon entropy-based model | 9.892 | 10.460 | |
dp = 0.32mm | Tsallis entropy-based model | 9.966 | 5.470 |
Shannon entropy-based model | 9.954 | 8.093 | |
dp = 2.42mm | Tsallis entropy-based model | 9.908 | 20.070 |
Shannon entropy-based model | 9.914 | 13.960 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Wang, H.; Peng, D.; Dou, J. Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy 2019, 21, 55. https://doi.org/10.3390/e21010055
Zhu Z, Wang H, Peng D, Dou J. Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy. 2019; 21(1):55. https://doi.org/10.3390/e21010055
Chicago/Turabian StyleZhu, Zhongfan, Hongrui Wang, Dingzhi Peng, and Jie Dou. 2019. "Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory" Entropy 21, no. 1: 55. https://doi.org/10.3390/e21010055
APA StyleZhu, Z., Wang, H., Peng, D., & Dou, J. (2019). Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy, 21(1), 55. https://doi.org/10.3390/e21010055