New Results on the Sequence Spaces Inclusion Equations of the Form Where F, F′ ∈ {w0, w, w∞}
Abstract
:1. Introduction
- (1)
- , where , and
- (2)
- and ,
2. On the Triangle and the Sets , , and
- (i)
- (a) and ,(b) for E, , c or ,(c) ,(d) for ;
- (ii)
- (a) for , c or ,(b) ,(c) and ,(d) for or c,(e) for , or c;
- (iii)
- .
3. On the Multipliers Involving the Sets , , and
4. Application to the Solvability of the (SSIE) of the Form , Where , and of the (SSIE) , Where
4.1. On the (SSIE)
4.2. On the (SSIE)
4.3. On the (SSIE) , Where
4.4. Application to the Solvability of the (SSE)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Malafosse, B.; Malkowsky, E.; Rakočević, V. Operators Between Sequence Spaces and Applications; Springer: Singapore, 2021; ISBN 978-981-15-9741-1. [Google Scholar]
- Wilansky, A. Summability through Functional Analysis; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Maddox, I.J. On Kuttner’s theorem. J. Lond. Math. Soc. 1968, 43, 285–290. [Google Scholar] [CrossRef]
- Maddox, I.J. Elements of Functional Analysis; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Maddox, I.J. Infinite Matrices of Operators; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980; Volume 786. [Google Scholar]
- de Malafosse, B. New results on the (SSIE) with an operator of the form FΔ ⊂ E + Fx′ involving the spaces of strongly summable and convergent sequences by the Cesàro method. Axioms 2021, 10, 157. [Google Scholar] [CrossRef]
- Boos, J. Classical and Modern Methods in Summability; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Wilansky, A. Modern Methods in Topological Vector Spaces; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Kamthan, P.K.; Gupta, M. Sequence Spaces and Series; Marcel Dekker: New York, NY, USA, 1981. [Google Scholar]
- Hardy, G.H. Divergent Series; Oxford University Press: Oxford, UK, 1973. [Google Scholar]
- Zeller, K.; Beekmann, W. Theorie der Limitierungsverfahren; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1968. [Google Scholar]
- Kizmaz, H. On certain sequence spaces. Canad. Math. Bull. 1981, 24, 169–176. [Google Scholar] [CrossRef] [Green Version]
- de Malafosse, B. New results on the sequence spaces inclusions equations involving the spaces w∞ and w0. Acta Univ. Comen 2022, 91, 53–68. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Malafosse, B.; Malkowsky, E.; Rakočević, V.
New Results on the Sequence Spaces Inclusion Equations of the Form
de Malafosse B, Malkowsky E, Rakočević V.
New Results on the Sequence Spaces Inclusion Equations of the Form
de Malafosse, Bruno, Eberhard Malkowsky, and Vladimir Rakočević.
2023. "New Results on the Sequence Spaces Inclusion Equations of the Form
de Malafosse, B., Malkowsky, E., & Rakočević, V.
(2023). New Results on the Sequence Spaces Inclusion Equations of the Form