As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Predicting machine failures is of the utmost importance in industrial systems as it can turn expensive crashes and repair costs into affordable maintenance costs. To this end, this paper presents preliminary work for detecting failures in a centrifugal compressor train based on sensorial data. We show the detection capabilities of a two-step process consisting of: (1) a preprocessing step to reduce the dimensionality of the input data using Principal Component Analysis, and (2) an anomaly detection step using the Mahalanobis distance to detect anomalous observations on the sensors’ data. The experiments using real-world data demonstrate the feasibility of our approach and the ability of the method to detect the failures eight days in advance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.