@inproceedings{li-etal-2024-cif,
title = "{CIF}-Bench: A {C}hinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models",
author = "Li, Yizhi and
Zhang, Ge and
Qu, Xingwei and
Li, Jiali and
Li, Zhaoqun and
Wang, Noah and
Li, Hao and
Yuan, Ruibin and
Ma, Yinghao and
Zhang, Kai and
Zhou, Wangchunshu and
Liang, Yiming and
Zhang, Lei and
Ma, Lei and
Zhang, Jiajun and
Li, Zuowen and
Huang, Wenhao and
Lin, Chenghua and
Fu, Jie",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.739",
doi = "10.18653/v1/2024.findings-acl.739",
pages = "12431--12446",
abstract = "The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following.Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (**CIF-Bench**), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances.Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9{\%}, highlighting the limitations of LLMs in less familiar language and task contexts.This work not only uncovers the current limitations of LLMs in handling Chinese language tasks but also sets a new standard for future LLM generalizability research, pushing towards the development of more adaptable, culturally informed, and linguistically diverse models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-cif">
<titleInfo>
<title>CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yizhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ge</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingwei</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiali</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaoqun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruibin</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinghao</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wangchunshu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiajun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuowen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhao</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following.Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (**CIF-Bench**), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances.Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9%, highlighting the limitations of LLMs in less familiar language and task contexts.This work not only uncovers the current limitations of LLMs in handling Chinese language tasks but also sets a new standard for future LLM generalizability research, pushing towards the development of more adaptable, culturally informed, and linguistically diverse models.</abstract>
<identifier type="citekey">li-etal-2024-cif</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.739</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.739</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>12431</start>
<end>12446</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models
%A Li, Yizhi
%A Zhang, Ge
%A Qu, Xingwei
%A Li, Jiali
%A Li, Zhaoqun
%A Wang, Noah
%A Li, Hao
%A Yuan, Ruibin
%A Ma, Yinghao
%A Zhang, Kai
%A Zhou, Wangchunshu
%A Liang, Yiming
%A Zhang, Lei
%A Ma, Lei
%A Zhang, Jiajun
%A Li, Zuowen
%A Huang, Wenhao
%A Lin, Chenghua
%A Fu, Jie
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F li-etal-2024-cif
%X The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following.Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (**CIF-Bench**), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances.Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9%, highlighting the limitations of LLMs in less familiar language and task contexts.This work not only uncovers the current limitations of LLMs in handling Chinese language tasks but also sets a new standard for future LLM generalizability research, pushing towards the development of more adaptable, culturally informed, and linguistically diverse models.
%R 10.18653/v1/2024.findings-acl.739
%U https://aclanthology.org/2024.findings-acl.739
%U https://doi.org/10.18653/v1/2024.findings-acl.739
%P 12431-12446
Markdown (Informal)
[CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models](https://aclanthology.org/2024.findings-acl.739) (Li et al., Findings 2024)
ACL
- Yizhi Li, Ge Zhang, Xingwei Qu, Jiali Li, Zhaoqun Li, Noah Wang, Hao Li, Ruibin Yuan, Yinghao Ma, Kai Zhang, Wangchunshu Zhou, Yiming Liang, Lei Zhang, Lei Ma, Jiajun Zhang, Zuowen Li, Wenhao Huang, Chenghua Lin, and Jie Fu. 2024. CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models. In Findings of the Association for Computational Linguistics: ACL 2024, pages 12431–12446, Bangkok, Thailand. Association for Computational Linguistics.