@inproceedings{christiansen-etal-2021-effect,
title = "The Effect of Round-Trip Translation on Fairness in Sentiment Analysis",
author = "Christiansen, Jonathan Gabel and
Gammelgaard, Mathias and
S{\o}gaard, Anders",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.363",
doi = "10.18653/v1/2021.emnlp-main.363",
pages = "4423--4428",
abstract = "Sentiment analysis systems have been shown to exhibit sensitivity to protected attributes. Round-trip translation, on the other hand, has been shown to normalize text. We explore the impact of round-trip translation on the demographic parity of sentiment classifiers and show how round-trip translation consistently improves classification fairness at test time (reducing up to 47{\%} of between-group gaps). We also explore the idea of retraining sentiment classifiers on round-trip-translated data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="christiansen-etal-2021-effect">
<titleInfo>
<title>The Effect of Round-Trip Translation on Fairness in Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">Gabel</namePart>
<namePart type="family">Christiansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Gammelgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis systems have been shown to exhibit sensitivity to protected attributes. Round-trip translation, on the other hand, has been shown to normalize text. We explore the impact of round-trip translation on the demographic parity of sentiment classifiers and show how round-trip translation consistently improves classification fairness at test time (reducing up to 47% of between-group gaps). We also explore the idea of retraining sentiment classifiers on round-trip-translated data.</abstract>
<identifier type="citekey">christiansen-etal-2021-effect</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.363</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.363</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4423</start>
<end>4428</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Effect of Round-Trip Translation on Fairness in Sentiment Analysis
%A Christiansen, Jonathan Gabel
%A Gammelgaard, Mathias
%A Søgaard, Anders
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F christiansen-etal-2021-effect
%X Sentiment analysis systems have been shown to exhibit sensitivity to protected attributes. Round-trip translation, on the other hand, has been shown to normalize text. We explore the impact of round-trip translation on the demographic parity of sentiment classifiers and show how round-trip translation consistently improves classification fairness at test time (reducing up to 47% of between-group gaps). We also explore the idea of retraining sentiment classifiers on round-trip-translated data.
%R 10.18653/v1/2021.emnlp-main.363
%U https://aclanthology.org/2021.emnlp-main.363
%U https://doi.org/10.18653/v1/2021.emnlp-main.363
%P 4423-4428
Markdown (Informal)
[The Effect of Round-Trip Translation on Fairness in Sentiment Analysis](https://aclanthology.org/2021.emnlp-main.363) (Christiansen et al., EMNLP 2021)
ACL