IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Deep Learning Technologies: Architecture, Optimization, Techniques, and Applications
A Novel Differential Evolution Algorithm Based on Local Fitness Landscape Information for Optimization Problems
Jing LIANGKe LIKunjie YUCaitong YUEYaxin LIHui SONG
Author information
JOURNAL FREE ACCESS

2023 Volume E106.D Issue 5 Pages 601-616

Details
Abstract

The selection of mutation strategy greatly affects the performance of differential evolution algorithm (DE). For different types of optimization problems, different mutation strategies should be selected. How to choose a suitable mutation strategy for different problems is a challenging task. To deal with this challenge, this paper proposes a novel DE algorithm based on local fitness landscape, called FLIDE. In the proposed method, fitness landscape information is obtained to guide the selection of mutation operators. In this way, different problems can be solved with proper evolutionary mechanisms. Moreover, a population adjustment method is used to balance the search ability and population diversity. On one hand, the diversity of the population in the early stage is enhanced with a relative large population. One the other hand, the computational cost is reduced in the later stage with a relative small population. The evolutionary information is utilized as much as possible to guide the search direction. The proposed method is compared with five popular algorithms on 30 test functions with different characteristics. Experimental results show that the proposed FLIDE is more effective on problems with high dimensions.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top